Panyunin, N. M. Feynman-Kac and Feynman formulas for evolution pseudodifferential equations in superspace. (English) Zbl 1176.81051 Russ. J. Math. Phys. 15, No. 4, 511-521 (2008). Summary: In the paper, evolution pseudodifferential equations in the space of superanalytic functions \(\mathcal{A}(X)\) of an infinite-dimensional argument with symbols in the space \(\mathcal{F}(Y)\) of Fourier supertransforms of distributions on the dual superspace are considered. For these equations, the “weak” Cauchy problem is posed and the existence theorem for the solutions of this problem is proved. The main result of the paper is the theorem concerning the representation of solutions of the “weak” Cauchy problem by the Feynman path integral in the phase superspace (the Feynman-Kac formula). The Feynman integral is understood in the sequential sense. Thus, the Feynman formula becomes an immediate consequence of the Feynman-Kac formula. MSC: 81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry 35S30 Fourier integral operators applied to PDEs 46S60 Functional analysis on superspaces (supermanifolds) or graded spaces × Cite Format Result Cite Review PDF Full Text: DOI References: [1] F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables (Moskov. Gos. Univ., Moscow, 1983); Introduction to Superanalysis (D. Reidel, Dordrecht-Boston, 1987). [2] V. S. Vladimirov and I.V. Volovich, ”Superanalysis. I. Differential Calculus,” Teoret. Mat. Fiz. 59(1), 3–27 (1984) [Theoret. and Math. Phys. 59 (1), 317–335 (1984)]. · Zbl 0552.46023 [3] V. S. Vladimirov and I.V. Volovich, ”Superanalysis. II. Integral Calculus,” Teoret. Mat. Fiz. 60(2), 169–198 (1984) [Theoret. and Math. Phys. 60 (2), 743–765 (1984)]. · Zbl 0599.46068 [4] A.Yu. Khrennikov, Superanalysis (Fizmatlit, Moscow, 2005; English transl. of the 1st ed.: Kluwer Academic Publishers, Dordrecht, 1999). [5] O. G. Smolyanov and E. T. Shavgulidze, ”The Fourier Transform and Pseudodifferential Operators in Superanalysis,” Dokl. Akad. Nauk SSSR 299(4), 816–820 (1988) [Soviet Math. Dokl. 37 (2), 476–481 (1988)]. · Zbl 0699.47036 [6] A. P. Robertson and W. J. Robertson, Topological Vector Spaces (Cambridge University Press, New York, 1964; Mir, Moscow, 1967). · Zbl 0123.30202 [7] A. Yu. Khrennikov, ”The Feynman Measure in a Phase Space and Symbols of Infinite-Dimensional Pseudodifferential Operators,” Mat. Zametki 37(5), 734–742 (1985) [Math. Notes 37 (5–6), 404–409 (1985)]. [8] O. G. Smolyanov, A. G. Tokarev, and A. Truman, ”Hamiltonian Feynman Path Integrals via the Chernoff Formula,” J. Math. Phys. 43(10), 5161–5171 (2002). · Zbl 1060.58009 · doi:10.1063/1.1500422 [9] O. G. Smolyanov and E. T. Shavgulidze, Path Integrals (Moskov. Gos. Univ., Moscow, 1990) [in Russian]. [10] A. A. Slavnov,”Continual Integral in Perturbation Theory,” Teoret. Mat. Fiz. 22(2), 177–185 (1975) [in Russian]. [11] P. R. Chernoff, ”Note on Product Formulas for Operator Semigroups,” J. Funct. Anal. 2, 238–242 (1968). · Zbl 0157.21501 · doi:10.1016/0022-1236(68)90020-7 [12] N. M. Panyunin, ”Fourier Transform of Supermeasures,” Russ. J. Math. Phys. 14(4), 501–504 (2007). · Zbl 1180.46058 · doi:10.1134/S1061920807040176 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.