×

zbMATH — the first resource for mathematics

One-particle density matrix of liquid \(^{4}\mathrm{He}\). (English. Russian original) Zbl 1176.82050
Theor. Math. Phys. 154, No. 1, 6-25 (2008); translation from Teor. Mat. Fiz. 154, No. 1, 9-30 (2008).
Summary: Using the expression for the total density matrix for a system of \(N\) interacting Bose particles found in our previous papers, we calculate the one-particle density matrix in the coordinate representation. At low temperatures, the leading approximation of this matrix reproduces the results of the Bogolyubov theory. In the classical limit, the proposed theory reproduces the results of the theory of the classical liquid in the approximation of chaotic phases. From the one-particle density matrix, we find the particle momentum distribution function and the mean kinetic energy of the Bose liquid and investigate the phenomenon of Bose-Einstein condensation.
MSC:
82D50 Statistical mechanical studies of superfluids
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. O. Vakarchuk, J. Phys. Stud., 8, 223 (2004).
[2] N. N. Bogolyubov and D. N. Zubarev, Sov. Phys. JETP, 1, 83 (1955).
[3] I. O. Vakarchuk, J. Phys. Stud., 1, 156 (1997).
[4] I. A. Vakarchuk, Theor. Math. Phys., 65, 1164 (1985); 80, 983 (1989); 82, 308 (1990). · doi:10.1007/BF01017941
[5] N. N. Bogolyubov, Izv. AN SSSR. Ser. Fiz., 11, 77 (1947).
[6] N. N. Bogolyubov, Selected Works in Three Volumes [in Russian], Vol. 2, Naukova Dumka, Kiev (1969). · Zbl 0226.01021
[7] D. N. Zubarev, Zh. Eksp. Teor. Fiz., 29, 881 (1955).
[8] K. Huang, Statistical Mechanics, Wiley, New York (1987).
[9] N. H. March, W. H. Young, and S. Sampanthar, The Many-Body Problem in Quantum Mechanics, Dover, New York (1995).
[10] E. Feenberg, Theory of Quantum Fluids, Acad. Press, New York (1969).
[11] A. Isihara, Statistical Physics, Acad. Press, New York (1971).
[12] R. P. Feynman, Statistical Mechanics, Benjamin, Reading, Mass. (1972).
[13] I. A. Vakarchuk, Theor. Math. Phys., 23, 496 (1975). · doi:10.1007/BF01036160
[14] I. O. Vakarchuk, R. O. Prytula, and A. A. Rovenchak, J. Phys. Stud., 11, 259 (2007).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.