×

The Hölder continuity of solutions to generalized vector equilibrium problems. (English) Zbl 1176.90643

Summary: In this paper, by using a weaker assumption, we discuss the Hölder continuity of solution maps for two cases of parametric generalized vector equilibrium problems under the case that the solution map is a general set-valued one, but not a single-valued one. These results extend the recent ones in the literature. Several examples are given for the illustration of our results.

MSC:

90C48 Programming in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anh, L. Q.; Khanh, P. Q., Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, Journal of Mathematical Analysis and Applications, 294, 699-711 (2004) · Zbl 1048.49004
[2] Anh, L. Q.; Khanh, P. Q., On the Hölder continuity of solutions to multivalued vector equilibrium problems, Journal of Mathematical Analysis and Applications, 321, 308-315 (2006) · Zbl 1104.90041
[3] Anh, L. Q.; Khanh, P. Q., Uniqueness and Hölder continuity of solution to multivalued vector equilibrium problems in metric spaces, Journal of Global Optimization, 37, 449-465 (2007) · Zbl 1156.90025
[4] Anh, L. Q.; Khanh, P. Q., Various kinds of semicontinuity of the solution sets to symmetric multivalued vector quasiequilibrium problems, Journal of Global Optimization, 41, 539-558 (2008) · Zbl 1165.90026
[5] Anh, L. Q.; Khanh, P. Q., Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions, Journal of Global Optimization, 42, 515-531 (2008) · Zbl 1188.90274
[6] Anh, L. Q.; Khanh, P. Q., Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks: I. Upper semicontinuities, Set-Valued Analysis, 16, 267-279 (2008) · Zbl 1192.90208
[7] L.Q. Anh, P.Q. Khanh, Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks: II. Lower semicontinuities applications, Set-Valued Analysis, doi:10.1007/sl 1228-008-0082-z.; L.Q. Anh, P.Q. Khanh, Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks: II. Lower semicontinuities applications, Set-Valued Analysis, doi:10.1007/sl 1228-008-0082-z. · Zbl 1156.90443
[8] Ansari, Q. H.; Fabian, F. B., Generalized vector quasi-equilibrium problems with applications, Journal of Mathematical Analysis and Applications, 277, 246-256 (2003) · Zbl 1022.90023
[9] Ansari, Q. H.; Yao, J. C., An existence result for the generalized vector equilibrium problem, Applied Mathematics Letters, 12, 53-56 (1999) · Zbl 1014.49008
[10] Aubin, J. P.; Ekeland, I., Applied Nonlinear Analysis (1984), John Wiley and Sons: John Wiley and Sons New York · Zbl 0641.47066
[11] Bianchi, M.; Pini, R., A note on stability for parametric equilibrium problems, Operations Research Letters, 31, 445-450 (2003) · Zbl 1112.90082
[12] C.R. Chen, S.J. Li, K.L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, Journal of Global Optimization, doi:10.1007/sl0898-008-9736-9; C.R. Chen, S.J. Li, K.L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, Journal of Global Optimization, doi:10.1007/sl0898-008-9736-9 · Zbl 1213.54028
[13] Chen, G. Y.; Yang, X. Q.; Yu, H., A nonlinear scalarization function and generalized quasi-vector equilibrium problems, Journal of Global Optimization, 32, 451-466 (2005) · Zbl 1130.90413
[14] Cheng, Y. H.; Zhu, D. L., Global stability results for the weak vector variational inequality, Journal of Global Optimization, 32, 543-550 (2005) · Zbl 1097.49006
[15] Li, S. J.; Chen, C. R., Stability of weak vector variational inequality, Nonlinear Analysis (2008) · Zbl 1158.49018
[16] Li, S. J.; Chen, G. Y.; Teo, K. L., On the stability of generalized vector quasivariational inequality problems, Journal of Optimization Theory and Applications, 113, 283-295 (2002) · Zbl 1003.47049
[17] Li, S. J.; Teo, K. L.; Yang, X. Q., Generalized vector quasi-equilibrium problems, Mathematical Methods of Operations Research, 61, 385-397 (2005) · Zbl 1114.90114
[18] Li, S. J.; Teo, K. L.; Yang, X. Q., A remark on a standard and linear vector network equilibrium problem with capacity constraints, European Journal of Operational Research, 184, 13-23 (2008) · Zbl 1175.90068
[19] Ait Mansour, M.; Riahi, H., Sensitivity analysis for abstract equilibrium problems, Journal of Mathematical Analysis and Applications, 306, 684-691 (2005) · Zbl 1068.49005
[20] Tan, N. X., Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, 122, 231-245 (1985)
[21] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002
[22] Yen, N. D., Hölder continuity of solutions to parametric variational inequalities, Applied Mathematics and Optimization, 31, 245-255 (1995) · Zbl 0821.49011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.