zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability in switched recurrent neural networks with time-varying delay via nonlinear measure. (English) Zbl 1176.92003
Summary: Based on switched systems and recurrent neural networks (RNNs) with time-varying delays, a model of switched RNNs is formulated. Global asymptotical stability (GAS) and global robust stability (GRS) for such switched neural networks are studied by employing nonlinear measure and linear matrix inequality (LMI) techniques. Some new sufficient conditions are obtained to ensure GAS or GRS of the unique equilibrium of the proposed switched system. Furthermore, the proposed LMI results are computationally efficient as they can be solved numerically with standard commercial software. Finally, three examples are provided to illustrate the usefulness of the results.

92B20General theory of neural networks (mathematical biology)
34K20Stability theory of functional-differential equations
92-08Computational methods (applications to natural sciences)
34K25Asymptotic theory of functional-differential equations
68T05Learning and adaptive systems
Full Text: DOI
[1] Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delay. Phys. Lett. A 311, 504--511 (2003) · Zbl 1098.92501 · doi:10.1016/S0375-9601(03)00569-3
[2] Boyd, S., EI Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadephia (1994) · Zbl 0816.93004
[3] Cao, J., Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst.-I 50(1), 34--44 (2003)
[4] Cao, J., Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans. Circuits Syst.-I 52(2), 417--426 (2005) · doi:10.1109/TCSI.2004.841574
[5] Cheng, D., Guo, L., Lin, Y., Wang, Y.: Stabilization of switched linear systems. IEEE Trans. Autom. Cont. 50(5), 661--666 (2005) · doi:10.1109/TAC.2005.846594
[6] Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Cont. 47(11), 1883--1887 (2002) · doi:10.1109/TAC.2002.804474
[7] Ensari, T., Arik, S.: Global stability of a class of neural networks with time-varying delay. IEEE Trans. Circuits Syst.-II 52(3), 126--130 (2005)
[8] Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554--2558 (1982)
[9] Huang, H., Qu, Y., Li, H.: Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty. Phys. Lett. A 345, 345--354 (2005) · Zbl 05314215 · doi:10.1016/j.physleta.2005.07.042
[10] Joy, M.: On the global convergence of a class of functional differential equations with applications in neural network theory. J. Math. Anal. Appl. 232, 61--81 (1999) · Zbl 0958.34057
[11] Lee, S.H., Kim, T.H., Lim, J.T.: A new stability analysis of switched systems. Automatica 36, 917--922 (2000) · Zbl 0953.93015 · doi:10.1016/S0005-1098(99)00208-3
[12] Li, P., Cao, J.: Stability in static delayed neural networks: a nonlinear measure approach. Neurocomputing 69, 1776--1781 (2006) · Zbl 05184723 · doi:10.1016/j.neucom.2005.12.031
[13] Liao, X., Chen, G., Sanchez, E.N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE Trans. Circuits Syst.-I 49(7), 1033--1039 (2002)
[14] Liao, X., Wong, K.W., Wu, Z., Chen, G.: Novel robust stability criteria for interval-delayed Hopfield neural networks. IEEE Trans. Circuits Syst.-I 48(11), 1355--1359 (2001) · Zbl 1006.34071
[15] Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59--70 (1999) · doi:10.1109/37.793443
[16] Marcus, C.M., Westerveld, R.M.: Stability of analogy neural networks with delay. Phys. Rev. A, 39, 347--359 (1989) · doi:10.1103/PhysRevA.39.347
[17] Morita, M.: Associative memory with nonmonotone dynamics. Neural Network, 6, 115--126 (1993)
[18] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[19] Persis, C.D., Santis, R.D., Morse, A.S.: Switched nonlinear systems with state-dependent dwell-time. Syst. Control Lett. 50, 291--302 (2003) · Zbl 1157.93510
[20] Sanchez, E.N., Perez, J.P.: Input-to-state stability (ISS) analysis for dynamic neural networks. IEEE Trans. Circuits Syst.-I 46(11), 1395--1398 (1999) · Zbl 0956.68133
[21] Skafidas, E., Evans, R.J., Savkin, A.V., Petersen, I.R.: Stability results for switched controller systems. Automatica 35, 553--564 (1999) · Zbl 0949.93014 · doi:10.1016/S0005-1098(98)00167-8
[22] Xia, Y., Wang, J.: On the stability of globally projected dynamical systems. J. Optim. Theory Appl. 106(1), 129--150 (2000) · Zbl 0971.37013 · doi:10.1023/A:1004611224835
[23] Xie, G., Wang, L.: Stability of switched linear systems with time-delay in detection of switching signal. J. Math. Anal. Appl. 305, 277--290 (2005) · Zbl 1140.93463
[24] Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Improved global robust asymptotic stability criteria for delayed cellular neural networks. IEEE Trans. Syst. Man, Cybe.-B 35(6), 1263--1267 (2005)
[25] Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Novel global asymptotic stability criteria for delayed cellular neural networks. IEEE Trans. Circuits Syst.-II 52(6), 349--353 (2005)
[26] Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE Trans. Autom. Control 43(4), 461--474 (1998) · Zbl 0905.93024 · doi:10.1109/9.664149
[27] Ye, H., Michel, A.N.: Robust stability of nonlinear time-delay systems with applications to neural networks. IEEE Trans. Circuits Syst.-I 43(7), 532--543 (1996)
[28] Zhang, J.: Global stability analysis in delayed cellular neural networks. Comp. Math. Appl. 45, 1707--1720 (2003) · Zbl 1045.37057
[29] Cao, J., Yuan, K., Li, H.: Global asymptotical stability of generalized recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans. Neural Networks 17(6), 1646--1651 (2006)
[30] Cao, J., Song, Q.: Stability in Cohen-Grossberg type BAM neural networks with time-varying delays. Nonlinearity 19(7), 1601--1617 (2006) · Zbl 1118.37038