zbMATH — the first resource for mathematics

Co-Poisson intertwining. (Entrelacement de co-Poisson.) (French. English summary) Zbl 1177.11074
Summary: The intimate link relating the functional equations of \(L\)-functions to the summatory formulas whose prototype is the Poisson formula is a familiar fact. This link involves the Fourier integral transform and its generalizations. Here, we shall reexamine the harmonic (as well as Hilbertian and distributional) meaning of the functional equations with the simplest shape, the one applying to the Riemann zeta function and to the Dirichlet \(L\)-series (many of our considerations have a more general range.) Certain formulas, related to but distinct from the Poisson-type formulas, play the central role. We call them co-Poisson formulas.

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI Numdam EuDML
[1] Burnol, J.-F., Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions \(L\) de Dirichlet et de Riemann, C. R. Acad. Sci. Paris Sér. I Math., 333, 3, 201-206, (2001) · Zbl 1057.11039
[2] Burnol, J.-F., Sur LES “espaces de sonine” associés par de branges à la transformation de Fourier, C. R. Math. Acad. Sci. Paris, 335, 8, 689-692, (2002) · Zbl 1032.46054
[3] Burnol, J.-F., Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C. R. Math. Acad. Sci. Paris, 336, 11, 919-924, (2003) · Zbl 1083.34063
[4] Burnol, J.-F., On Fourier and zeta(s), Forum Math., 16, 6, 789-840, (2004) · Zbl 1077.11058
[5] Burnol, J.-F., Two complete and minimal systems associated with the zeros of the Riemann zeta function, J. Théor. Nombres Bordeaux, 16, 1, 65-94, (2004) · Zbl 1156.11330
[6] Burnol, J.-F., Spacetime causality in the study of the Hankel transform, Annales Henri Poincaré, 7, 1013-1034, (2006) · Zbl 1115.70012
[7] de Branges, L., Self-reciprocal functions, J. Math. Anal. Appl., 9, 433-457, (1964) · Zbl 0134.10504
[8] de Branges, L., Espaces hilbertiens de fonctions entières, (1972), Masson et Cie. Éditeurs, Paris
[9] Duffin, R. J., Representation of Fourier integrals as sums I, II, III · Zbl 0037.19802
[10] Duffin, R. J.; Weinberger, H. F., Dualizing the Poisson summation formula, Proc. Nat. Acad. Sci. U.S.A., 88, 16, 7348-7350, (1991) · Zbl 0771.42001
[11] Duffin, R. J.; Weinberger, H. F., On dualizing a multivariable Poisson summation formula, J. Fourier Anal. Appl., 3, 5, 487-497, (1997) · Zbl 0892.42002
[12] Dym, H.; McKean, H. P., Fourier series and integrals, (1972), Academic Press, New York · Zbl 0242.42001
[13] Gel’fand, I. M.; Graev, M. I.; Pyatetskii-Shapiro, I. I., Representation theory and automorphic functions, (1969), W. B. Saunders Co., Philadelphia, Pa. · Zbl 0177.18003
[14] Hörmander, L., The analysis of linear partial differential operators. I, 256, (1983), Springer-Verlag, Berlin · Zbl 0521.35001
[15] Katznelson, Y., Une remarque concernant la formule de Poisson, Studia Math., 29, 107-108, (1967) · Zbl 0169.39602
[16] Müntz, C. H., Beziehungen der riemannschen-funktion zu willkürlichen reellen funktionen, Mat. Tidsskrift, B, 39-47, (1922) · JFM 48.0346.02
[17] Rosenblum, M.; Rovnyak, J., Topics in Hardy classes and univalent functions, (1994), Birkhäuser Verlag, Basel · Zbl 0816.30001
[18] Rovnyak, J.; Rovnyak, V., Self-reciprocal functions for the Hankel transformation of integer order, Duke Math. J., 34, 771-785, (1967) · Zbl 0163.35605
[19] Rovnyak, J.; Rovnyak, V., Sonine spaces of entire functions, J. Math. Anal. Appl., 27, 68-100, (1969) · Zbl 0159.17303
[20] Schwartz, L., Théorie des distributions, (1966), Hermann, Paris · Zbl 0149.09501
[21] Titchmarsh, E. C., Introduction to the theory of Fourier integrals, (1986), Chelsea Publishing Co., New York · JFM 63.0367.05
[22] Titchmarsh, E. C., The theory of the Riemann zeta-function, (1986), The Clarendon Press Oxford University Press, New York · Zbl 0601.10026
[23] Weinberger, H. F., Fourier transforms of Moebius series, (1950), Pittsburgh
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.