zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new nonlinear integro-differential inequality and its application. (English) Zbl 1177.26030
Summary: A new nonlinear integro-differential inequality is established. Using the properties of $M$-cone and a generalization of Barbalat’s lemma, the boundedness and asymptotic behavior for the solution of the inequality are obtained. Applying this nonlinear integro-differential inequality, the invariant and attracting sets for Cohen-Grossberg neural networks with mixed delays are obtained. The results extend and improve the earlier publications. An example is given to illustrate the efficiency of the obtained results.

26D10Inequalities involving derivatives, differential and integral operators
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Lakshmikantham, V.; Leela, S.: Differential and integral inequalities, vols. I, II, (1969) · Zbl 0177.12403
[2] Walter, W.: Differential and integral inequalities, (1970) · Zbl 0252.35005
[3] Xu, D.: Integro-differential equations and delay integral inequalities, Tôhoku math. J. 44, 365-378 (1992) · Zbl 0760.34059 · doi:10.2748/tmj/1178227303
[4] Huang, Y.; Xu, D.; Yang, Z.: Dissipativity and periodic attractor for non-autonomous neural networks with time-varying delays, Neurocomputing 70, 2953-2958 (2007)
[5] Xu, D.; Yang, Z.: Impulsive delay differential inequality and stability of neural networks, J. math. Anal. appl. 305, 107-120 (2005) · Zbl 1091.34046 · doi:10.1016/j.jmaa.2004.10.040
[6] Xu, D.; Zhu, W.; Long, S.: Global exponential stability of impulsive integro-differential equation, Nonlinear anal. 64, 2805-2816 (2006) · Zbl 1093.45004 · doi:10.1016/j.na.2005.09.020
[7] Yang, Z.; Xu, D.: Impulsive effects on stability of Cohen--Grossberg neural networks with variable delays, Appl. math. Comput. 177, 63-78 (2006) · Zbl 1103.34067 · doi:10.1016/j.amc.2005.10.032
[8] Xu, D.; Yang, Z.: Attracting and invariant sets for a class of impulsive functional differential equations, J. math. Anal. appl. 329, 1036-1044 (2007) · Zbl 1154.34393 · doi:10.1016/j.jmaa.2006.05.072
[9] Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[10] Halanay, A.: Differential equations: stability, oscillations, time lages, (1966) · Zbl 0144.08701
[11] Li, B.; Xu, D.: Dissipativity of neural networks with continuously distributed delays, Electron. J. Differential equations 119, 1-7 (2006) · Zbl 1118.34072 · emis:journals/EJDE/Volumes/2006/119/abstr.html
[12] Lu, K.; Xu, D.; Yang, Z.: Global attraction and stability for Cohen--Grossberg neural networks with delays, Neural netw. 19, 1538-1549 (2006) · Zbl 1178.68437 · doi:10.1016/j.neunet.2006.07.006
[13] Xu, D.; Zhao, H.: Invariant and attracting sets of Hopfield neural networks with delay, Internat. J. Systems sci. 32, 863-866 (2001) · Zbl 1003.92002 · doi:10.1080/002077201300306207
[14] Zhao, H.: Invariant set and attractor of nonautonomous functional differential systems, J. math. Anal. appl. 282, 437-443 (2003) · Zbl 1048.34124 · doi:10.1016/S0022-247X(02)00370-0
[15] Song, Q.; Zhao, Z.: Global dissipativity of neural networks with both variable and unbounded delays, Chaos solitons fractals 25, 393-401 (2005) · Zbl 1072.92005 · doi:10.1016/j.chaos.2004.11.035
[16] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis, vol. 2, (1991) · Zbl 0729.15001
[17] Michalska, H.; Vinter, R. B.: Nonlinear stabilization using discontinuous moving-horizon control, IMA J. Math. control inform. 11, 321-340 (1994) · Zbl 0812.93058 · doi:10.1093/imamci/11.4.321