zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global behavior of four competitive rational systems of difference equations in the plane. (English) Zbl 1177.37046
Summary: We investigate the global dynamics of solutions of four distinct competitive rational systems of difference equations in the plane. We show that the basins of attractions of different locally asymptotically stable equilibrium points are separated by the global stable manifolds of either saddle points or nonhyperbolic equilibrium points. Our results give complete answer to Open Problem 2 posed recently by {\it E. Camouzis} et al. [J. Difference Equ. Appl. 15, No. 3, 303--323 (2009; Zbl 1169.39010)].

MSC:
37E30Homeomorphisms and diffeomorphisms of planes and surfaces
37G99Local and nonlocal bifurcation theory
39A10Additive difference equations
WorldCat.org
Full Text: DOI EuDML
References:
[1] E. Camouzis, M. R. S. Kulenović, G. Ladas, and O. Merino, “Rational systems in the plane-open problems and conjectures,” Journal of Difference Equations and Applications, vol. 15, no. 3, pp. 303-323, 2009. · Zbl 1169.39010 · doi:10.1080/10236190802125264
[2] D\vz. Burgić, M. R. S. Kulenović, and M. Nurkanović, “Global dynamics of a rational system of difference equations in the plane,” Communications on Applied Nonlinear Analysis, vol. 15, no. 1, pp. 71-84, 2008. · Zbl 1153.39009
[3] D. Clark and M. R. S. Kulenović, “A coupled system of rational difference equations,” Computers & Mathematics with Applications, vol. 43, no. 6-7, pp. 849-867, 2002. · Zbl 1001.39017 · doi:10.1016/S0898-1221(01)00326-1
[4] D. Clark, M. R. S. Kulenović, and J. F. Selgrade, “Global asymptotic behavior of a two-dimensional difference equation modelling competition,” Nonlinear Analysis: Theory, Methods & Applications, vol. 52, no. 7, pp. 1765-1776, 2003. · Zbl 1019.39006 · doi:10.1016/S0362-546X(02)00294-8
[5] J. E. Franke and A.-A. Yakubu, “Mutual exclusion versus coexistence for discrete competitive systems,” Journal of Mathematical Biology, vol. 30, no. 2, pp. 161-168, 1991. · Zbl 0735.92023 · doi:10.1007/BF00160333
[6] J. E. Franke and A.-A. Yakubu, “Geometry of exclusion principles in discrete systems,” Journal of Mathematical Analysis and Applications, vol. 168, no. 2, pp. 385-400, 1992. · Zbl 0778.93012 · doi:10.1016/0022-247X(92)90167-C
[7] M. W. Hirsch and H. Smith, “Monotone dynamical systems,” in Handbook of Differential Equations: Ordinary Differential Equations, vol. 2, pp. 239-357, Elsevier B. V., Amsterdam, The Netherlands, 2005. · Zbl 1094.34003
[8] M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002. · Zbl 1001.37001
[9] M. R. S. Kulenović and M. Nurkanović, “Asymptotic behavior of a two dimensional linear fractional system of difference equations,” Radovi Matemati\vcki, vol. 11, no. 1, pp. 59-78, 2002. · Zbl 1038.39007
[10] M. R. S. Kulenović and M. Nurkanović, “Asymptotic behavior of a competitive system of linear fractional difference equations,” Journal of Inequalities and Applications, vol. 2005, no. 2, pp. 127-143, 2005. · Zbl 1086.39008 · doi:10.1155/JIA.2005.127 · eudml:125941
[11] M. R. S. Kulenović and M. Nurkanović, “Asymptotic behavior of a competitive system of linear fractional difference equations,” Advances in Difference Equations, vol. 2006, Article ID 19756, 13 pages, 2006. · Zbl 1139.39017 · doi:10.1155/ADE/2006/19756 · eudml:54223
[12] P. Polá\vcik and I. Tere\vs\vcák, “Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems,” Archive for Rational Mechanics and Analysis, vol. 116, no. 4, pp. 339-360, 1992. · doi:10.1007/BF00375672
[13] J. F. Selgrade and M. Ziehe, “Convergence to equilibrium in a genetic model with differential viability between the sexes,” Journal of Mathematical Biology, vol. 25, no. 5, pp. 477-490, 1987. · Zbl 0634.92008 · doi:10.1007/BF00276194
[14] H. L. Smith, “Invariant curves for mappings,” SIAM Journal on Mathematical Analysis, vol. 17, no. 5, pp. 1053-1067, 1986. · Zbl 0606.47056 · doi:10.1137/0517075
[15] H. L. Smith, “Periodic competitive differential equations and the discrete dynamics of competitive maps,” Journal of Differential Equations, vol. 64, no. 2, pp. 165-194, 1986. · Zbl 0596.34013 · doi:10.1016/0022-0396(86)90086-0
[16] H. L. Smith, “Periodic solutions of periodic competitive and cooperative systems,” SIAM Journal on Mathematical Analysis, vol. 17, no. 6, pp. 1289-1318, 1986. · Zbl 0609.34048 · doi:10.1137/0517091
[17] H. L. Smith, “Planar competitive and cooperative difference equations,” Journal of Difference Equations and Applications, vol. 3, no. 5-6, pp. 335-357, 1998. · Zbl 0907.39004 · doi:10.1080/10236199708808108
[18] M. R. S. Kulenović and O. Merino, “Invariant manifolds for competitive discrete systems in the plane,” http://arxiv1.library.cornell.edu/abs/0905.1772v1. · Zbl 1202.37027
[19] J. M. Cushing, S. Levarge, N. Chitnis, and S. M. Henson, “Some discrete competition models and the competitive exclusion principle,” Journal of Difference Equations and Applications, vol. 10, no. 13-15, pp. 1139-1151, 2004. · Zbl 1071.39005 · doi:10.1080/10236190410001652739
[20] S. Basu and O. Merino, “On the global behavior of solutions to a planar system of difference equations,” Communications on Applied Nonlinear Analysis, vol. 16, no. 1, pp. 89-101, 2009. · Zbl 1176.39014