×

zbMATH — the first resource for mathematics

C-series discrete chains. (English) Zbl 1177.37075
Theor. Math. Phys. 146, No. 2, 170-182 (2006); translation from Teor. Mat. Fiz. 146, No. 2, 208-221 (2006).
Summary: We find analogues of the generalized two-dimensional Toda chains of the \(C^{N}\) and \(\tilde C_N\) series with three discrete independent variables and give Lax pairs for these chains.

MSC:
37K60 Lattice dynamics; integrable lattice equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Hirota, J. Phys. Soc. Japan, 50, 3785 (1981).
[2] D. Levi, L. Pilloni, and P. M. Santini, J. Phys. A, 14, 1567 (1981). · Zbl 0481.35046
[3] G. Darboux, Lecons sur la theorie generale des surfaces et les applications geometrique du calcul infinitesimal, Vol. 2, Gautier-Villars, Paris (1915). · JFM 45.0881.05
[4] A. N. Leznov and M. V. Savel’ev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl., Birkhauser, Basel (1992).
[5] R. S. Ward, Phys. Lett. A, 199, 45 (1995). · Zbl 1020.37536
[6] A. V. Zabrodin, Theor. Math. Phys., 113, 1347 (1997); 116, 782 (1998).
[7] I. T. Habibullin, Theor. Math. Phys., 143, 515 (2005); ”Multidimensional integrable boundary problems,” nlin.SI/0401028 (2004); ”Discrete Toda field equations,” nlin.SI/0503055 (2005). · Zbl 1178.37077
[8] I. A. Dynnikov and S. P. Novikov, Russ. Math. Surveys, 52, 1057 (1997). · Zbl 0928.35107
[9] Yu. B. Suris, Leningr. Math. J., 2, 339 (1991).
[10] T. G. Kazakova, Theor. Math. Phys., 138, 356 (2004). · Zbl 1178.37078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.