×

Generalized Hyers-Ulam stability of generalized \((N,K)\)-derivations. (English) Zbl 1177.39032

Summary: Let \(3\leq n\), and \(3\leq k\leq n\) be positive integers. Let \(A\) be an algebra and let \(X\) be an \(A\)-bimodule. A \(\mathbb C\)-linear mapping \(d:A\to X\) is called a generalized \((n,k)\)-derivation if there exists a \((k-1)\)-derivation \(\delta :A\to X\) such that \(d(a_1a_2\dots a_n)=\delta(a_1)a_2\dots a_n+a_1\delta(a_2)a_3\dots a_n+\cdots +a_1a_2\dots a_{k-2}\delta(a_{k-1})a_k\dots a_n+a_1a_2\dots a_{k-1}d(a_k)a_{k+1}\cdots a_n+a_1a_2\dots a_kd(a_{k+1})a_{k+2}\cdots a_n+a_1a_2\cdots a_{k+1}d(a_{k+2})a_{k+3}\cdots a_n+\cdots +a_1\cdots a_{n-1}d(a_n)\) for all \(a_1,a_2,\dots,a_n\in A\). The main purpose of this paper is to prove the generalized Hyers-Ulam stability of the generalized \((n,k)\)-derivations.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
47B47 Commutators, derivations, elementary operators, etc.
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, New York, NY, USA, 1964, (Chapter VI, Some Questions in Analysis: 1, Stability). · Zbl 0137.24201
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[4] Z. Gajda, “On stability of additive mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 431-434, 1991. · Zbl 0739.39013 · doi:10.1155/S016117129100056X
[5] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. · Zbl 0482.47033 · doi:10.1016/0022-1236(82)90048-9
[6] P. G\uavru\cta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[7] M. Mathieu, Ed., Elementary Operators & Applications, World Scientific, River Edge, NJ, USA, 1992, Proceedings of the International Workshop.
[8] F. Wei and Z. Xiao, “Generalized Jordan derivations on semiprime rings,” Demonstratio Mathematica, vol. 40, no. 4, pp. 789-798, 2007. · Zbl 1139.16023
[9] B. Hvala, “Generalized derivations in rings,” Communications in Algebra, vol. 26, no. 4, pp. 1147-1166, 1998. · Zbl 0899.16018 · doi:10.1080/00927879808826190
[10] K.-W. Jun and D.-W. Park, “Almost derivations on the Banach algebra Cn[0,1],” Bulletin of the Korean Mathematical Society, vol. 33, no. 3, pp. 359-366, 1996. · Zbl 0883.46030
[11] M. Amyari, C. Baak, and M. S. Moslehian, “Nearly ternary derivations,” Taiwanese Journal of Mathematics, vol. 11, no. 5, pp. 1417-1424, 2007. · Zbl 1141.39024
[12] R. Badora, “On approximate derivations,” Mathematical Inequalities & Applications, vol. 9, no. 1, pp. 167-173, 2006. · Zbl 1093.39024
[13] C.-G. Park, “Linear derivations on Banach algebras,” Nonlinear Functional Analysis and Applications, vol. 9, no. 3, pp. 359-368, 2004. · Zbl 1068.47039
[14] M. S. Moslehian, “Hyers-Ulam-Rassias stability of generalized derivations,” International Journal of Mathematics and Mathematical Sciences, vol. 2006, Article ID 93942, 8 pages, 2006. · Zbl 1120.39029 · doi:10.1155/IJMMS/2006/93942
[15] M. E. Gordji and N. Ghobadipour, “Nearly generalized Jordan derivations,” to appear in Mathematica Slovaca. · Zbl 1260.39034
[16] C.-G. Park, “Homomorphisms between Poisson JC\ast -algebras,” Bulletin of the Brazilian Mathematical Society, vol. 36, no. 1, pp. 79-97, 2005. · Zbl 1091.39007 · doi:10.1007/s00574-005-0029-z
[17] C. Baak and M. S. Moslehian, “On the stability of J\ast -homomorphisms,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 1, pp. 42-48, 2005. · Zbl 1085.39026 · doi:10.1016/j.na.2005.04.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.