Homotopy operators for the variational bicomplex, representations of the Euler-Lagrange complex, and the Helmholtz-Sonin conditions. (English) Zbl 1177.49056

Summary: We give formulæ for two distinct local homotopy operators for the horizontal differential in the variational bicomplex. We deduce two different representations of the classes of forms in the Euler-Lagrange complex, and hence two different versions of the Helmholtz-Sonin equations for the local variationality of a source form. We give explicit relationships between these two versions of the equations.


49N45 Inverse problems in optimal control
58A20 Jets in global analysis
58E30 Variational principles in infinite-dimensional spaces
Full Text: DOI


[1] I.M. Anderson, The Variational Bicomplex. http://www.math.usu.edu/ fg_mp/ · Zbl 0772.58013
[2] M. Crampin, W. Sarlet, and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Camb. Phil. Soc. 99, 565 (1986) · Zbl 0609.58049
[3] M. Crampin and D. J. Saunders, The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems, Houston J.Math. 30, 657 (2004). · Zbl 1057.58008
[4] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Nederl. Akad. Wetensch. Proc. A59, 338 (1956). · Zbl 0079.37502
[5] I. Kolář and R. Vitolo, On the Helmholtz operator for Euler morphisms, Math. Proc. Cam. Phil. Soc. 135,277 (2003). · Zbl 1048.58012
[6] M. Krbek, J. Musilová, and J. Kašparová, The variational sequence: local and global properties, Proceedings of the Seminar on Differential Geometry, Krupka, Mathematical Publications Volume 2 (Silesian University in Opava, 2000), p. 15. · Zbl 1004.58008
[7] M. Krbek and J. Musilová, Representation of the variational sequence by differential forms, Acta Appl. Math. 88, 177 (2005). · Zbl 1085.58014
[8] D. Krupka, Variational sequences on finite order jet spaces, Differential Geometry and its Applications (Proceedings of the International Conference, Brno, Czechoslovakia, 1989), Janyška and Krupka (World Scientific, 1990), p. 236.
[9] D. Krupka, The Vainberg-Tonti Lagrangian and the Euler-Lagrange mapping, Differential Geometric Methods in Mechanics and Field Theory, Cantrijn, Crampin and Langerock (Academia Press, Gent, 2007), p. 81.
[10] D. Krupka, Global variational theory in fibred spaces, Handbook of Global Analysis, Krupka and Saunders (Elsevier, 2008), p. 773. · Zbl 1236.58026
[11] P. J. Olver, Equivalence and the Cartan form, Acta Appl. Math. 31, 99 (1993). · Zbl 0794.49041
[12] D. J. Saunders, An alternative approach to the Cartan form in Lagrangian field theories, J. Phys. A: Math. Gen. 20, 339 (1987). · Zbl 0652.58002
[13] D. J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, 1989). · Zbl 0665.58002
[14] D. J. Saunders, Jetmanifolds and natural bundles, Handbook of Global Analysis, Krupka and Saunders (Elsevier, 2008), p. 1035.
[15] D. J. Saunders, Homogeneous variational complexes and bicomplexes. ArXiV: math.DG/0512383 to appear in J. Geom. Phys., DOI 10.1016/j.geomphys.2009.03.001
[16] F. Takens, A global version of the inverse problem to the calculus of variations, J. Diff. Geom. 14, 543 (1979). · Zbl 0463.58015
[17] W. M. Tulczyjew, The Euler-Lagrange resolution, Lecture Notes in Mathematics 836 (Springer, 1980), p. 22. · Zbl 0456.58012
[18] A. M. Vinogradov, The C-spectral sequence, Lagrangian formalism and conservation laws, J. Math. Anal. Appl. 100, 1 (1984). · Zbl 0548.58014
[19] R. Vitolo, Variational sequences, Handbook of Global Analysis, Krupka and Saunders (Elsevier, 2008), p. 1115. · Zbl 1236.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.