zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Merging asymptotic expansions for semistable random variables. (English) Zbl 1177.60031
Summary: Merging asymptotic expansions are established for distribution functions from the domain of geometric partial attraction of a semistable law. The length of the expansion depends on the exponent of the semistable law and on the characteristic function of the underlying distribution. We obtain sufficient conditions for the quantile function in order to get real infinite asymptotic expansion. The results are generalizations of the existing theory in the stable case.

60F05Central limit and other weak theorems
60E07Infinitely divisible distributions; stable distributions
Full Text: DOI
[1] G. Christoph and W. Wolf, Convergence Theorems with a Stable Limit Law, Mathematical Research 70, Akademie Verlag, Berlin, 1992. · Zbl 0773.60012
[2] S. Csörgo, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged), 68:815--847, 2002. · Zbl 1046.60017
[3] S. Csörgo, Fourier analysis of semistable distributions, Acta Appl. Math., 96:159--175, 2007. · Zbl 1117.60015 · doi:10.1007/s10440-007-9111-4
[4] S. Csörgo, Merging asymptotic expansions in generalized St. Petersburg games, Acta Sci. Math. (Szeged), 73:297--331, 2007. · Zbl 1164.60007
[5] S. Csörgo, E. Haeusler, and D.M. Mason, A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables, Adv. in Appl. Math., 9:259--333, 1988. · Zbl 0657.60029 · doi:10.1016/0196-8858(88)90016-4
[6] S. Csörgo and P. Kevei, Merging asymptotic expansion for cooperative gamblers in generalized St. Petersburg games, Acta Math. Hungar., 121(1--2):119--156, 2008. · Zbl 1199.60052 · doi:10.1007/s10474-008-7193-8
[7] S. Csörgo and Z. Megyesi, Merging to semistable laws, Teor. Veroyatn. Primen., 47:90--109, 2002 [Theory Probab. Appl. 47:17--33, 2002].
[8] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Massachusetts, 1954. · Zbl 0056.36001
[9] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Nauka, Moscow, 1965 (in Russian). English translation: Noordhof, Groningen, 1971.
[10] P. Kevei and S. Csörgo, Merging of linear combinations to semistable laws, J. Theor. Probab. (to appear). · Zbl 1173.60306
[11] V. M. Kruglov, On the extensions of the class of stable distributions, Theory Probab. Appl., 17:685--694, 1972. · Zbl 0279.60035 · doi:10.1137/1117081
[12] Z. Megyesi, A probabilistic approach to semistable laws and their domains of partial attraction, Acta Sci. Math. (Szeged), 66:403--434, 2000. · Zbl 0957.60020
[13] A. Mitalauskas and V. Statulevičius, An asymptotic expansion in the case of a stable approximating law, Liet. Matem. Rink., 16(4):149--165, 1976 (in Russian). English translation: Lith. Math. J. 16(4), 574--586 (1976), reprinted in: V. Statulevičius, Selected Mathematical Papers, Institute of Mathematics and Informatics, Vilnius (2006), pp. 400--417. · Zbl 0366.60076
[14] G. Pap, The accuracy of merging approximation in generalized St. Petersburg games, Preprint, available online, http://uk.arxiv.org/pdf/0710.1438.pdf . · Zbl 1219.60026
[15] V. V. Petrov, Limit Theorems of Probability Theory, Oxford Studies in Probability 4, Clarendon Press (Oxford), 1996.