zbMATH — the first resource for mathematics

\(\mathbb C^{2}\) formulation of Euler liquid. (English) Zbl 1177.76016
Theor. Math. Phys. 148, No. 1, 980-985 (2006); translation from Teor. Mat. Fiz. 148, No. 1, 126-132 (2006).
Summary: We construct the Hamiltonian formalism for continuous media using the representation of Euler variables in a \(\mathbb C^{2} \times \infty \) phase space.
76A05 Non-Newtonian fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
Full Text: DOI arXiv
[1] I. Antoniou and G. P. Pronko, Theor. Math. Phys., 141, 1670 (2004). · Zbl 1178.76389 · doi:10.1023/B:TAMP.0000049761.77390.e4
[2] R. Salmon, Ann. Rev. Fluid Mech., 20, 225 (1998). · doi:10.1146/annurev.fl.20.010188.001301
[3] R. Jackiw, V. P. Nair, S.-Y. Pi, and A. P. Polychronatos, J. Phys. A, 37, R327 (2004). · Zbl 1072.76004 · doi:10.1088/0305-4470/37/42/R01
[4] V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974); English transl., Springer, Berlin (1978); V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, Berlin (1998).
[5] J. Marsden and A. Weinstein, Phys. D, 4, 394 (1982); D. D. Holm, B. Kupershmidt, and C. D. Levermore, Phys. Lett. A, 98, 389 (1983); J. Marsden and A. Weinstein, Phys. D, 7, 305 (1983); D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, Phys. Rep., 123, 1 (1985); C. Lanczos, The Variational Principles of Mechanics (4th ed.), Univ. of Toronto Press, Toronto (1970). · Zbl 1194.35463 · doi:10.1016/0167-2789(82)90043-4
[6] H. Lamb, Hydrodynamics, Dover, New York (1932).
[7] V. E. Zakharov, JETP, 33, 927 (1971).
[8] A. A. Kirillov, Elements of the Theory of Representations [in Russian] (2nd ed.), Nauka, Moscow (1978); English transl. prev. ed., Springer, Berlin (1975); B. Kostant, Adv. Math., 34, 195 (1979). · Zbl 0355.22010
[9] A. Clebsch, J. Reine Angew. Math., 56, No. 1 (1859).
[10] P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Grad. Sch. Sci., Yeshiva Univ., New York (1964). · Zbl 0141.44603
[11] J.-M. Souriau, Structure des systemes dynamiques: Maitrises de math’ematique, Dunod, Paris (1970); J. Marsden and A. Weinstein, Rep. Math. Phys., 5, 121 (1972). · Zbl 0186.58001
[12] L. D. Faddeev and A. J. Niemi, ”Toroidal configurations as stable solitons,” hep-th/9705176 (1997).
[13] L. D. Faddeev and A. Niemi, Phys. Rev. Lett., 85, 3416 (2000); physics/0003083 (2000). · doi:10.1103/PhysRevLett.85.3416
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.