zbMATH — the first resource for mathematics

Dependence of equilibrium properties of channeled particles on the transverse quasitemperature. (English) Zbl 1177.82102
Theor. Math. Phys. 146, No. 3, 430-443 (2006); translation from Teor. Mat. Fiz. 146, No. 3, 509-524 (2006).
Summary: We use methods of nonequilibrium thermodynamics to investigate the quasiequilibrium and kinetic characteristics of channeled particles regarded as a separate thermodynamic subsystem. For the channeled particles, we derive the energy-momentum balance equation in the moving coordinate system and show that the solution of the balance equation provides an expression for the main thermodynamic parameter, the transverse quasitemperature of the channeled-particle subsystem. We study the quasiequilibrium angular distribution of particles after their passage through a thin single crystal, the quasiequilibrium distribution over the particle exit angles under backscattering conditions, and also the rate constant for the nonequilibrium (dechanneling) process at large deviations of the system as a whole from the thermodynamic equilibrium. We discuss a measurement method for the particle beam transverse temperature over the peak height of the angular particle distribution found in the framework of a “shoot-through” experiment.
82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
Full Text: DOI
[1] J. Lindhard, Mat.-Fyz. Medd. Danske Vid. Selsk., 34, No. 14, 1 (1965).
[2] D. N. Zubarev and Yu. A. Kashlev, Theor. Math. Phys., 29, 1135 (1976). · doi:10.1007/BF01028237
[3] D. N. Zubarev, Nonequilibruim Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Plenum, New York (1974).
[4] Yu. A. Kashlev, Theor. Math. Phys., 138, 123 (2004). · doi:10.1023/B:TAMP.0000010640.00300.ec
[5] G. J. Kutcher and M. H. Mittleman, Phys. Rev. A, 11, 125 (1975). · doi:10.1103/PhysRevA.11.125
[6] K. H. Mitchel, Phys., 30, 2194 (1964).
[7] F. Abel, G. Amsel, M. Bruneaux, C. Cohen, and A. L’Heir, Phys. Rev. B, 12, 4617 (1975). · doi:10.1103/PhysRevB.12.4617
[8] Yu. A. Kashlev, Phys. Stat. Sol. B, 190, 379 (1995). · doi:10.1002/pssb.2221900206
[9] J. H. Barrett, B. R. Appleton, T. S. Noggle, C. D. Moak, J. A. Biggerstaf, S. Datz, and R. Behrisch, ” Hyperchanneling,” in: Proc. 5th Intl. Conf. on Atomic Collisions in Solids (Gatlinburg, Tennessee, September 24–28, 1973, S. Datz, B. R. Appleton, and C. D. Moak, eds.), Vol. 2, Plenum, New York (1975), p. 645.
[10] B. R. Appleton, J. H. Barrett, T. S. Noggle, and C. D. Moak, Rad. Eff., 13, 171 (1972). · doi:10.1080/00337577208231177
[11] L. C. Feldman and B. R. Appleton, Phys. Rev. B, 8, 935 (1973). · doi:10.1103/PhysRevB.8.935
[12] H. F. Krause, J. H. Barrett, S. Datz, P. F. Dittner, N. L. Jones, J. Gomes del Campo, and C. R. Vane, Phys. Rev. A, 48, 283 (1994). · doi:10.1103/PhysRevA.49.283
[13] B. R. Appleton, C. Erginsoy, and W. M. Gibson, Phys. Rev., 161, 330 (1967). · doi:10.1103/PhysRev.161.330
[14] J. V. Andersen, Mat.-Fyz. Medd. Danske Vid. Selsk., 36, No. 7, 1 (1967).
[15] J. A. Ellison, Phys. Rev. B, 18, 5948 (1978). · doi:10.1103/PhysRevB.18.5948
[16] T. Keleti, Basic Enzyme Kinetics, Akadémiai Kiadó, Budapest (1986).
[17] Yu. A. Kashlev, Theor. Math. Phys., 30, 51 (1977). · doi:10.1007/BF01029360
[18] A. I. Osipov, Teor. Eksper. Khim., 11, 649 (1966).
[19] M. Rahman, Phys. Rev. B, 52, 3384 (1995). · doi:10.1103/PhysRevB.52.3383
[20] S. U. Campisano, G. Foti, and E. Rimini, Nucl. Instr. Methods, 132, 169 (1976). · doi:10.1016/0029-554X(76)90731-X
[21] K. Gartner, W. Wesch, and G. Gotz, Nucl. Instr. Methods Phys. Res. B, 48, 192 (1990). · doi:10.1016/0168-583X(90)90102-Z
[22] J. H. Barrett and D. P. Jackson, Nucl. Instr. Methods, 170, 115 (1980). · doi:10.1016/0029-554X(80)90995-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.