[1] |
Aubin J.-P. (1984). Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9: 87--111 · Zbl 0539.90085
· doi:10.1287/moor.9.1.87 |

[2] |
Auslender A. (1979). Differential stability in nonconvex and nondifferentiable programming. Math. Progr. Study 10: 29--41 · Zbl 0403.90068 |

[3] |
Auslender A., Teboulle M. (2003). Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York · Zbl 1017.49001 |

[4] |
Bonnans J.F., Shapiro A. (2000). Perturbation Analysis of Optimization Problems. Springer, New York · Zbl 0966.49001 |

[5] |
Borwein J.M., Zhu Q.J. (2005). Techniques of Variational Analysis. Springer, New York · Zbl 1076.49001 |

[6] |
Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York · Zbl 0582.49001 |

[7] |
Dien P.H., Yen N.D. (1991). On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints. Appl. Math. Optim. 24: 35--54 · Zbl 0742.90086
· doi:10.1007/BF01447734 |

[8] |
Gauvin J., Dubeau F. (1982). Differential properties of the marginal function in mathematical programming. Math. Progr. Study 19: 101--119 · Zbl 0502.90072 |

[9] |
Gauvin J., Dubeau F. (1984). Some examples and counterexamples for the stability analysis of nonlinear programming problems. Math. Progr. Study 21: 69--78 · Zbl 0553.49019 |

[10] |
Gollan B. (1984). On the marginal function in nonlinear programming. Math. Oper. Res. 9: 208--221 · Zbl 0553.90092
· doi:10.1287/moor.9.2.208 |

[11] |
Ha T.X.D. (2005). Lagrange multipliers for set-valued problems associated with coderivatives. J. Math. Anal. Appl. 311: 647--663 · Zbl 1134.90490
· doi:10.1016/j.jmaa.2005.03.011 |

[12] |
Ioffe A.D., Tihomirov V.M. (1979). Theory of extremal problems. North-Holland Publishing Co., Amsterdam-New York · Zbl 0407.90051 |

[13] |
Lucet, Y., Ye, J.J.: Sensitivity analysis of the value function for optimization problems with variational inequality constraints. SIAM J. Control Optim. 40, 699--723 (2001); Erratum. SIAM J. Control Optim. 41, 1315--1319 (2002) · Zbl 1006.49022 |

[14] |
Luo Z.Q., Pang J.-S., Ralph D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge · Zbl 0870.90092 |

[15] |
Maurer H., Zowe J. (1979). First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Prog. 16: 98--110 · Zbl 0398.90109
· doi:10.1007/BF01582096 |

[16] |
Minchenko L.I. (2003). Multivalued analysis and differential properties of multivalued mappings and marginal functions. Optimization and related topics. J. Math. Sci. 116: 3266 · Zbl 1056.49021
· doi:10.1023/A:1023669004408 |

[17] |
Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field, D.A., Komkov, V. (eds.) Theoretical Aspects of Industrial Design, pp. 32--46, SIAM Publications (1992) · Zbl 0769.90075 |

[18] |
Mordukhovich B.S. (2006). Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin |

[19] |
Mordukhovich B.S. (2006). Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin |

[20] |
Mordukhovich B.S., Nam N.M. (2005). Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30: 800--816 · Zbl 1284.90083
· doi:10.1287/moor.1050.0147 |

[21] |
Mordukhovich B.S., Nam N.M., Yen N.D. (2007). Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming. Optimization 55: 685--708 · Zbl 1121.49017
· doi:10.1080/02331930600816395 |

[22] |
Mordukhovich B.S., Shao Y. (1996). Nonsmooth analysis in Asplund spaces. Trans. Am. Math. Soc. 348: 1230--1280 · Zbl 0881.49009
· doi:10.1090/S0002-9947-96-01543-7 |

[23] |
Outrata J.V., Koĉvara M., Zowe J. (1998). Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht · Zbl 0947.90093 |

[24] |
Phelps R.R. (1993). Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin · Zbl 0921.46039 |

[25] |
Robinson S.M. (1979). Generalized equations and their solutions, I: Basic theory. Math. Progr. Study 10: 128--141 · Zbl 0404.90093 |

[26] |
Rockafellar R.T. (1982). Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming. Math. Progr. Study 17: 28--66 · Zbl 0478.90060 |

[27] |
Rockafellar R.T. (1985). Extensions of subgradient calculus with applications to optimization. Nonlinear Anal. 9: 665--698 · Zbl 0593.49013
· doi:10.1016/0362-546X(85)90012-4 |

[28] |
Rockafellar R.T., Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin · Zbl 0888.49001 |

[29] |
Thibault L. (1991). On subdifferentials of optimal value functions. SIAM J. Control Optim. 29: 1019--1036 · Zbl 0734.90093
· doi:10.1137/0329056 |

[30] |
Ye J.J. (2001). Multiplier rules under mixed assumptions of differentiability and Lipschitz continuity. SIAM J. Control Optim. 39: 1441--1460 · Zbl 0994.90138
· doi:10.1137/S0363012999358476 |