Meromorphic observer-based pole assignment in time delay systems. (English) Zbl 1177.93043

Summary: The paper deals with a novel method of control system design which applies meromorphic transfer functions as models for retarded linear time delay systems. After introducing an auxiliary state model a finite-spectrum observer is designed to close a stabilizing state feedback. The observer finite spectrum is the key to implement a state feedback stabilization scheme and to apply the affine parametrization in controller design. On the basis of the so-called RQ-meromorphic functions an algebraic solution to the problem of time-delay system stabilization and control is presented that practically provides a finite spectrum assignment of the control loop.


93C05 Linear systems in control theory
93B55 Pole and zero placement problems
93D15 Stabilization of systems by feedback
Full Text: EuDML Link


[1] Breda D., Maset S., Vermiglio R.: Computing the characteristic roots for delay differential equations. IMA J. Numer. Anal. 24 (2004), 1, 1-19 · Zbl 1054.65079
[2] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Mathematical Sciences Vol. 99). Springer-Verlag, New York 1993 · Zbl 0787.34002
[3] Goodwin G. C., Graebe S. F., Salgado M. E.: Control System Design. Prentice Hall, Englewood Cliffs, N.J. 2001
[4] Kim J. H., Park H. B.: State feedback control for generalized continuous/discrete time-delay systems. Automatica 35 (1999), 8, 1443-1451 · Zbl 0954.93011
[5] Loiseau J. J.: Algebraic tools for the control and stabilization of time-delay systems. Ann. Review in Control 24 (2000), 135-149
[6] Michiels W., Engelborghs K., Vansevenant, P., Roose D.: Continuous pole placement method for delay equations. Automatica 38 (2002), 5, 747-761 · Zbl 1034.93026
[7] Michiels W., Roose D.: Limitations of delayed state feedback: a numerical study. Internat. J. Bifurcation and Chaos 12 (2002), 6, 1309-1320
[8] Michiels W., Vyhlídal T.: An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica 41 (2005), 991-998 · Zbl 1091.93026
[9] Mirkin L., Raskin N.: Every stabilizing dead-time controller has an observer-predictor-based structure. Automatica 39 (2003), 1747-1754 · Zbl 1039.93026
[10] Niculescu S. I., (eds.) K. Gu: Advances in Time-Delay Systems. Springer-Verlag, Berlin - Heidelberg 2004 · Zbl 1051.34002
[11] Olbrot W.: Stabilizability, detectability and spectrum assignment for linear autonomous systems with general time delays. IEEE Trans. Automat. Control 23 (1978), 5, 887-890 · Zbl 0399.93008
[12] Picard P., Lafay J. F., Kučera V.: Feedback realization of non-singular precompensators for linear systems with delays. IEEE Trans. Automat. Control 42 (1997), 6, 848-853 · Zbl 0888.93029
[13] Trinh H.: Linear functional state observer for time delay systems. Internat. J. Control 72 (1999), 18, 1642-1658 · Zbl 0953.93012
[14] Vyhlídal T., Zítek P.: Mapping the spectrum of a retarded time-delay system utilizing root distribution features. Proc. IFAC Workshop on Time-Delay Systems, TDS’06, L’Aquila 2006
[15] Vyhlídal T., Zítek P.: Mapping based algorithm for large-scale computation of quasi-polynomial zeros. IEEE Trans. Automat. Control · Zbl 1367.65076
[16] Wang Q. E., Lee T. H., Tan K. K.: Finite Spectrum Assignment Controllers for Time Delay Systems. Springer, London 1995
[17] Zhang W., Algower, F., Liu T.: Controller parametrization for SISO and MIMO plants with time-delay. Systems Control Lett. 55 (2006), 794-802 · Zbl 1100.93038
[18] Zítek P., Hlava J.: Anisochronic internal model control of time delay systems. Control Engrg. Practice 9 (2001), 5, 501-516
[19] Zítek P., Kučera V.: Algebraic design of anisochronic controllers for time delay systems. Internat. J. Control 76 (2003), 16, 1654-1665 · Zbl 1044.93058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.