zbMATH — the first resource for mathematics

The Frisch scheme in algebraic and dynamic identification problems. (English) Zbl 1177.93089
Summary: This paper considers the problem of determining linear relations from data affected by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch scheme and their properties are first described in the algebraic case. In this context two main problems are analyzed: the evaluation of the maximal number of linear relations compatible with data affected by errors and the determination of the linear relation actually linking the noiseless data. Subsequently the extension of the Frisch scheme to the identification of dynamical systems is considered for both SISO and MIMO cases and the problem of its application to real processes is investigated. For this purpose suitable identification criteria and model parametrizations are described. Finally two classical identification problems are mapped into the Frisch scheme, the blind identification of FIR channels and the identification of AR+ noise models. This allows some theoretical and practical extensions.

93E12 Identification in stochastic control theory
93C05 Linear systems in control theory
15B48 Positive matrices and their generalizations; cones of matrices
62J05 Linear regression; mixed models
Full Text: Link EuDML
[1] Abed-Meraim K., Qiu, W., Hua Y.: Blind system identification. Proc. IEEE 85 (1997), 1310-1322
[2] Anderson B. D. O., Deistler M.: Identifiability of dynamic errors-in-variables models. J. Time Ser. Anal. 5 (1984), 1-13 · Zbl 0536.93064
[3] Anderson B. D. O., Deistler, M., Scherrer W.: Solution set properties for static errors-in-variables problems. Automatica 32 (1996), 1031-1035 · Zbl 0854.93032
[4] Beghelli S., Castaldi P., Guidorzi, R., Soverini U.: A robust criterion for model selection in identification from noisy data. Proc. 9th International Conference on Systems Engineering, Las Vegas 1993, pp. 480-484 · Zbl 0800.93274
[5] Beghelli S., Guidorzi, R., Soverini U.: The Frisch scheme in dynamic system identification. Automatica 26 (1990), 171-176 · Zbl 0714.93058
[6] Bobillet W., Grivel E., Guidorzi, R., Najim M.: Noisy speech de-reverberation as a SIMO system identification issue. Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux 2005
[7] Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim, M., Soverini U.: Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes. IEEE Trans. Signal Process. 55 (2007), 5564-5578 · Zbl 1390.94103
[8] Deistler M.: Linear errors-in-variables models. Time Series and Linear Systems (Lecture Notes in Control and Information Sciences; S. Bittanti. Springer-Verlag, Berlin 1986, pp. 37-67 · Zbl 0588.62158
[9] Diversi R., Guidorzi, R., Soverini U.: A new criterion in EIV identification and filtering applications. Preprints 13th IFAC Symposium on System Identification, Rotterdam 2003, pp. 1993-1998
[10] Diversi R., Guidorzi, R., Soverini U.: Frisch scheme-based algorithms for EIV identification. Proc. 12th IEEE Mediterranean Conference on Control and Automation, Kusadasi 2004
[11] Diversi R., Guidorzi, R., Soverini U.: Blind identification and equalization of two-channel FIR systems in unbalanced noise environments. Signal Process. 85 (2005), 215-225 · Zbl 1148.94395
[12] Diversi R., Guidorzi, R., Soverini U.: A noise-compensated estimation scheme for AR processes. Proc. 44th IEEE Conference on Decision and Control and 8th European Control Conference, Seville 2005, pp. 4146-4151
[13] Diversi R., Guidorzi, R., Soverini U.: Yule-Walker equations in the Frisch scheme solution of errors-in-variables identification problems. Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 391-395
[14] Diversi R., Guidorzi, R., Soverini U.: Identification of autoregressive models in the presence of additive noise. International J. Adaptive Control and Signal Process. 22 (2008), 465-481 · Zbl 1284.93239
[15] Diversi R., Soverini, U., Guidorzi R.: A new estimation approach for AR models in presence of noise. Preprints 16th IFAC World Congress, Prague 2005 · Zbl 1148.94395
[16] Fernando K. V., Nicholson H.: Identification of linear systems with input and output noise: the Koopmans-Levin method. IEE Proc. 132 (1985), 30-36 · Zbl 0554.93071
[17] Frisch R.: Statistical Confluence Analysis by Means of Complete Regression Systems. Economic Institute, Pub. No. 5, Oslo University 1934 · Zbl 0011.21903
[18] Guidorzi R.: Equivalence, invariance and dynamical system canonical modelling. Part I, Kybernetika 25 (1989), 233-257, Part II, Kybernetika 25 (1989), 386-407 · Zbl 0699.93006
[19] Guidorzi R.: Certain models from uncertain data: the algebraic case. Systems Control Lett. 17 (1991), 415-424 · Zbl 0749.93018
[20] Guidorzi R.: Errors-in-variables identification and model uniqueness. Statistical Modelling and Latent Variables (K. Haagen, D. J. Bartholomew, and M. Deistler, North Holland, Amsterdam 1993, pp. 127-150
[21] Guidorzi R.: Identification of the maximal number of linear relations from noisy data. Systems Control Lett. 24 (1995), 159-166 · Zbl 0877.93131
[22] Guidorzi R.: Identification of multivariable processes in the Frisch scheme context. MTNS’96, St. Louis 1996
[23] Guidorzi R., Diversi R.: Determination of linear relations from real data in the Frisch scheme context. Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 530-535
[24] Guidorzi R., Diversi, R., Soverini U.: Blind identification and equalization of multichannel FIR systems in unbalanced noise environments. Signal Process. 87 (2007), 654-664 · Zbl 1186.94137
[25] Guidorzi R., Diversi R., Soverini, U., Valentini A.: A noise signature approach to fault detection and isolation. Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven 2004
[26] Guidorzi R., Pierantoni M.: A new parametrization of Frisch scheme solutions. Proc. XII International Conference on Systems Science, Wroclaw 1995, pp. 114-120
[27] Guidorzi R., Soverini, U., Diversi R.: Multivariable EIV identification. Proc. 10th IEEE Mediterranean Conference on Control and Automation, Lisboa 2002
[28] Guidorzi R., Stoian A.: On the computation of the maximal corank of a covariance matrix under the Frisch scheme. Proc. 10th IFAC Symposium on System Identification, Copenhagen 1994, pp. 171-173 · Zbl 0925.93111
[29] Kalman R. E.: Identification from real data. Current Developments in the Interface: Economics, Econometrics, Mathematics (M. Hazewinkel, H. G. Rinnooy Kan, and D. Reidel, Dordrecht 1982, pp. 161-196
[30] Kalman R. E.: Nine Lectures on Identification. (Lecture Notes on Economics and Mathematical Systems.) Springer-Verlag, Berlin
[31] Kalman R. E.: System identification from noisy data. Dynamical Systems II (A. R. Bednarek and L. Cesari, Academic Press 1982, pp. 135-164
[32] Kay S. M.: The effects of noise on the autoregressive spectral estimator. IEEE Trans. Acoustics, Speech and Signal Process. 27 (1979), 478-485 · Zbl 0441.62084
[33] Kay S. M.: Noise compensation for autoregressive spectral estimates. IEEE Trans. Acoustics, Speech and Signal Process. 28 (1980), 292-303 · Zbl 0519.62082
[34] Levin M. J.: Estimation of a system pulse transfer function in the presence of noise. IEEE Trans. Automat. Control 9 (1964), 229-235
[35] Malinvaud E.: Méthodes statistiques de l’économétrie. Third edition. Dunod, Paris 1980 · Zbl 0421.62084
[36] Schachermayer W., Deistler M.: The set of observationally equivalent errors-in-variables models. Systems Control Lett. 34 (1998), 101-104 · Zbl 0902.93067
[37] Söderström T.: Errors-in-variables methods in system identification. Automatica 43 (2007), 939-958 · Zbl 1193.93090
[38] Söderström T.: Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems. IEEE Trans. Automat. Control 52 (2007), 985-997 · Zbl 1366.93684
[39] Stoica P., Nehorai A.: On the uniqueness of prediction error models for systems with noisy input-output data. Automatica 23 (1987), 541-543 · Zbl 0616.93074
[40] Tong L., Perreau S.: Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE 86 (1998), 1951-1968
[41] (ed.) S. Van Huffel: Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling. SIAM, Philadelphia 1997 · Zbl 0861.00018
[42] Huffel S. Van, (eds.) P. Lemmerling: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht 2002
[43] Woodgate K. G.: An upper bound on the number of linear relations identified from noisy data by the Frisch scheme. Systems Control Lett. 24 (1995), 153-158 · Zbl 0877.93130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.