zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Test maps and discrete groups in SL$(2,C)$. (English) Zbl 1178.30024
Author’s abstract: We present several discreteness criterions for a non-elementary group $G$ in SL$(2,C)$ by using a test map which need not be in $G$.

30C62Quasiconformal mappings in the plane
30F40Kleinian groups
20H10Fuchsian groups and their generalizations (group theory)
Full Text: Euclid
[1] A.F. Beardon: The Geometry of Discrete Groups, Graduate Texts in Mathematics 91 , Springer, New York, 1983. · Zbl 0528.30001
[2] M. Chen: Discreteness and convergence of Möbius groups , Geom. Dedicata 104 (2004), 61--69. · Zbl 1053.30038 · doi:10.1023/B:GEOM.0000023036.55318.40
[3] J. Gilman: Inequalities in discrete subgroups of $\mathrm{PSL}(2,\mathbf{R})$ , Canad. J. Math. 40 (1988), 115--130. · Zbl 0629.20023 · doi:10.4153/CJM-1988-005-x
[4] N.A. Isokenko: Systems of generators of subgroups of $\mathrm{PSL}(2,\mathbf{C})$ , Siberian Math. J. 31 (1990), 162--165.
[5] T. Jørgensen: On discrete groups of Möbius transformations , Amer. J. Math. 98 (1976), 739--749. JSTOR: · Zbl 0336.30007 · doi:10.2307/2373814 · http://links.jstor.org/sici?sici=0002-9327%28197623%2998%3A3%3C739%3AODGOMT%3E2.0.CO%3B2-0&origin=euclid
[6] G. Rosenberger: Minimal generating systems of a subgroup of $\mathrm{SL}(2,\mathbf{C})$ , Proc. Edinburgh Math. Soc. (2) 31 (1988), 261--265. · Zbl 0645.20030 · doi:10.1017/S0013091500003382
[7] D. Sullivan: Quasiconformal homeomorphisms and dynamics: Structure stability implies hyperbolicity for Kleinian groups , Acta Math. 155 (1985), 243--260. · Zbl 0606.30044 · doi:10.1007/BF02392543
[8] P. Tukia: Convergence groups and Gromov’s metric hyperbolic spaces , New Zealand J. Math. 23 (1994), 157--187. · Zbl 0855.30036
[9] P. Tukia and X. Wang: Discreteness of subgroups of $\mathrm{SL}(2,\mathbf{C})$ containing elliptic elements , Math. Scand. 91 (2002), 214--220. · Zbl 1017.30053
[10] S. Yang: On the discreteness criterion in $\mathrm{SL}(2,\mathbb{C})$ , Math. Z. 255 (2007), 227--230. · Zbl 1213.30047 · doi:10.1007/s00209-006-0016-0