zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On integral solutions of some nonlocal fractional differential equations with nondense domain. (English) Zbl 1178.34005
Summary: We prove the existence and uniqueness of integral solution for some nondensely defined fractional semilinear differential equation with nonlocal conditions $$\cases D^q_tx(t)=Ax(t)+f(t,x(t)),\quad t\in[0,T],\\ x(0)+g(x)=x_0.\endcases$$ The results are obtained by means of fixed point methods. We also give some examples of such problems.

MSC:
34A08Fractional differential equations
34G20Nonlinear ODE in abstract spaces
WorldCat.org
Full Text: DOI
References:
[1] Lakshmikantham, V.: Theory of fractional differential equations. Nonlinear analysis, TMA 60, No. 10, 3337-3343 (2008) · Zbl 1162.34344
[2] Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations. Nonlinear analysis, TMA 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001
[3] Lakshmikantham, V.; Vatsala, A. S.: Theory of fractional differential inequalities and applications. Commun. appl. Anal. 11, No. 3--4, 395-402 (2007) · Zbl 1159.34006
[4] G.M. Mophou, O. Nakoulima, G.M. N’Guérékata, Existence results for some fractional differential equations with nonlocal conditions (submitted for publication)
[5] N’guérékata, G. M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear analysis, TMA 70, No. 5, 1873-1876 (2009) · Zbl 1166.34320
[6] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[7] Lin, Wei: Global existence and chaos control of fractional differential equations. J. math. Anal. appl. 332, 709-726 (2007) · Zbl 1113.37016
[8] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differential equations 2006, No. 36, 1-12 (2006) · Zbl 1096.34016
[9] Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. math. Anal. appl. 179, 630-637 (1993) · Zbl 0798.35076
[10] Aizicovici, S.; Mckibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear analysis, TMA 39, 649-668 (2000) · Zbl 0954.34055
[11] Anguraj, A.; Karthikeyan, P.; N’guérékata, G. M.: Nonlocal Cauchy problem for some fractional abstract differential equations in Banach spaces. Commun. math. Anal. 6, No. 1, 31-35 (2009) · Zbl 1167.34387
[12] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. math. Anal. appl. 162, 494-505 (1991) · Zbl 0748.34040
[13] Liu, Hsiang; Chang, Jung-Chan: Existence for a class of partial differential equations with nonlocal conditions. Nonlinear analysis, TMA 70, No. 9, 3076-3083 (2009) · Zbl 1170.34346
[14] Z. Fan, Existence of nondensely defined evolution equations with nonlocal conditions, Nonlinear Analysis, in press (doi:10.1016/j.na.2008.07.036)
[15] Ezzinbi, K.; Liu, J.: Nondensely defined evolution equations with nonlocal conditions. Math. comput. Modelling 36, 1027-1038 (2002) · Zbl 1035.34063
[16] Hernández, E.: Existence of solutions to a second order partial differential equation with nonlocal condition. Electron. J. Differential equations 2003, No. 51, 1-10 (2003) · Zbl 1041.35045
[17] N’guérékata, G. M.: Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions. Differential and difference equations and applications, 843-849 (2006) · Zbl 1147.35329
[18] Jaradat, O. K.; Al-Omari, A.; Momani, S.: Existence of the mild solution for fractional semilinear initial value problems. Nonlinear analysis 69, 3153-3159 (2008) · Zbl 1160.34300
[19] G.M. Mophou, G.M. N’Guérékata, Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum (in press)
[20] Mophou, G. M.; N’guérékata, G. M.: Mild solution to semilinear fractional differential equations. Electron. J. Differential equations 2009, No. 21, 1-9 (2009) · Zbl 1180.34006
[21] Daftardar-Gejji, V.; Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. math. Anal. appl. 328, 10263 (2007) · Zbl 1115.34006
[22] Delbosco, D.; Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. math. Anal. appl. 204, 609-625 (1996) · Zbl 0881.34005
[23] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. (1983) · Zbl 0516.47023
[24] Da Prato, G.; Sinestrari, E.: Differential operators with non-dense domain. Ann. scuola norm. Sup. Pisa sci. 14, 285 (1987)
[25] Krasnoselskii, M. A.: Topological methods in the theory of nonlinear integral equations. (1964)
[26] Azé, D.: Eléments d’analyse convexe et variationnelle. (1997)