zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Blow-up rate and profile for a class of quasilinear parabolic system. (English) Zbl 1178.35193
Summary: This paper deals with positive solutions to a class of nonlocal and degenerate quasilinear parabolic system with null Dirichlet boundary conditions. The blow-up rate and blow-up profile are gained if the parameters and the initial data satisfy some conditions.

35K51Second-order parabolic systems, initial bondary value problems
35K65Parabolic equations of degenerate type
35K59Quasilinear parabolic equations
35B44Blow-up (PDE)
Full Text: DOI
[1] Friedman, A. and Mcleod, B. Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34(2), 425--447 (1985) · Zbl 0576.35068 · doi:10.1512/iumj.1985.34.34025
[2] Furter, J. and Grinfeld, M. Local vs. non-local interactions in population dynamics. J. Math. Biology 27(1), 65--80 (1989) · Zbl 0714.92012
[3] Li, Huilin and Wang, Mingxin. Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via nonlocal sources. J. Math. Anal. Appl. 333(2), 984--1007 (2007) · Zbl 1135.32006 · doi:10.1016/j.jmaa.2006.03.074
[4] Zheng, Sining and Wang, Lidong. Blow-up rate and profile for a degenerate parabolic system coupled via nonlocal sources. Comput. Math. Appl. 52(10--11), 1387--1402 (2006) · Zbl 1132.35403 · doi:10.1016/j.camwa.2006.10.018
[5] Deng, Weibing, Li, Yuxiang, and Xie, Chunhong. Blow-up and global existence for a nonlocal degenerate parabolic system. J. Math. Anal. Appl. 277(1), 199--217 (2003) · Zbl 1030.35096 · doi:10.1016/S0022-247X(02)00533-4
[6] Chen, Yujuan. Blow-up and global existence for a nonlocal degenerate quasilinear parabolic system. Acta Mathematica Scientia (Series A) (in preprint) · Zbl 1224.35215
[7] Duan, Zhiwen, Deng, Weibing, and Xie, Chunhong. Uniform blow-up profile for a degenerate parabolic system with nonlocal source. Comput. Math. with Appl. 47(6--7), 977--995 (2004) · Zbl 1061.35039 · doi:10.1016/S0898-1221(04)90081-8
[8] Liu, Qilin, Li, Yuxiang, and Gao, Hongjun. Uniform blow-up rate for a nonlocal degenerate parabolic equations. Nonlinear Analysis 66(4), 881--889 (2007) · Zbl 05126376 · doi:10.1016/j.na.2005.12.029
[9] Souplet, P. Uniform blow-up profiles and boundary behavior for diffusion equations with non-local nonlinear source. J. Diff. Eqns. 153(2), 374--406 (1999) · Zbl 0923.35077 · doi:10.1006/jdeq.1998.3535
[10] Du, Lili. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources. J. Math. Anal. Appl. 324(1), 304--320 (2006) · Zbl 1115.35065 · doi:10.1016/j.jmaa.2005.11.052