×

Some generalizations of the Caginalp phase-field system. (English) Zbl 1178.35194

Summary: Our aim in this article is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory of deformable continua proposed by Green and Naghdi. In particular, we obtain well-posedness results and study the asymptotic and spatial behaviours of the solutions.

MSC:

35K51 Initial-boundary value problems for second-order parabolic systems
35K55 Nonlinear parabolic equations
35J60 Nonlinear elliptic equations
80A22 Stefan problems, phase changes, etc.
35B40 Asymptotic behavior of solutions to PDEs
74F05 Thermal effects in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF00254827 · Zbl 0608.35080
[2] DOI: 10.1007/PL00001365 · Zbl 0973.35037
[3] DOI: 10.1002/mma.215 · Zbl 0984.35026
[4] DOI: 10.1080/00036819108840173 · Zbl 0790.35052
[5] Brokate M, Hysteresis and Phase Transitions (1996)
[6] Cherfils L, Adv. Math. Sci. Appl. 17 pp 107– (2007)
[7] DOI: 10.1007/s10492-009-0008-6 · Zbl 1212.35012
[8] DOI: 10.1002/mana.200410431 · Zbl 1107.35058
[9] DOI: 10.1103/PhysRevLett.94.154301
[10] Flavin JN, Quart. Appl. Math. 47 pp 325– (1989)
[11] DOI: 10.3934/dcds.2008.22.1009 · Zbl 1160.35353
[12] Gatti, S and Miranville, A. Asymptotic behavior of a phase-field system with dynamic boundary conditions, Differential equations: inverse and direct problems. Proceedings of the workshop ’Evolution Equations: Inverse and Direct Problems’. June 21–252004, Cortona. Edited by: Favini, A and Lorenzi, A. Vol. 251, pp.149–170. Boca Raton, FL: Chapman & Hall. A series of Lecture notes in pure and applied mathematics · Zbl 1123.35310
[13] DOI: 10.1002/mana.200510560 · Zbl 1133.35017
[14] Miranville A, Electron. J. Diff. Eqns. 2002 pp 1– (2002)
[15] DOI: 10.3934/cpaa.2005.4.683 · Zbl 1082.35033
[16] DOI: 10.1016/j.na.2009.01.061 · Zbl 1167.35304
[17] DOI: 10.1016/j.jmaa.2007.09.041 · Zbl 1139.35019
[18] DOI: 10.1002/mma.1092 · Zbl 1180.35107
[19] DOI: 10.1098/rspa.1991.0012 · Zbl 0726.73004
[20] DOI: 10.1080/01495739208946136
[21] DOI: 10.1007/BF00044969 · Zbl 0784.73009
[22] DOI: 10.1016/0377-0257(94)01288-S
[23] DOI: 10.1016/S0893-9659(00)00125-7 · Zbl 0971.74037
[24] DOI: 10.1080/014957302753384423
[25] DOI: 10.1098/rspa.2007.0076 · Zbl 1153.74013
[26] DOI: 10.3934/dcdsb.2003.3.383 · Zbl 1118.74012
[27] DOI: 10.1098/rspa.2000.0569 · Zbl 0985.74018
[28] DOI: 10.1098/rspa.2004.1381 · Zbl 1145.74337
[29] DOI: 10.1098/rspa.2003.1131 · Zbl 1070.74024
[30] DOI: 10.1016/j.jnnfm.2008.04.006
[31] DOI: 10.1080/00036819008839964 · Zbl 0694.35007
[32] DOI: 10.1515/JNETDY.2003.013
[33] Temam R, , Applied Mathematical Sciences 68, 2. ed. (1997)
[34] DOI: 10.1016/S1874-5717(08)00003-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.