Zhang, Qingye; Liu, Chungen Infinitely many homoclinic solutions for second order Hamiltonian systems. (English) Zbl 1178.37063 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 2, 894-903 (2010). Summary: We study the existence of infinitely many homoclinic solutions for second order Hamiltonian systems \(\ddot u -L(t)u+W_u(t,u) = 0,\forall t \in \mathbb R\), where \(L(t)\) is unnecessarily positive definite for all \(t \in \mathbb R\), and \(W(t,u)\) is of subquadratic growth as \(|u|\rightarrow \infty \). Cited in 50 Documents MSC: 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 34C37 Homoclinic and heteroclinic solutions to ordinary differential equations 70H05 Hamilton’s equations Keywords:homoclinic solution; second order Hamiltonian system; subquadratic PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{C. Liu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 2, 894--903 (2010; Zbl 1178.37063) Full Text: DOI OpenURL References: [1] Ambrosetti, A.; Bertotti, M.L., Homoclinic for second order conservation systems, (), 21-37 · Zbl 0804.34046 [2] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. sem. mat. univ. Padova, 89, 177-194, (1993) · Zbl 0806.58018 [3] Antonacci, F., Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign, Boll. unione mat. ital. B, 10, 7, 303-324, (1996) · Zbl 1013.34038 [4] Carrião, P.C.; Miyagaki, O.H., Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. math. anal. appl., 230, 157-172, (1999) · Zbl 0919.34046 [5] Chen, C.N.; Tzeng, S.Y., Existence and multiplicity results for homoclinic orbits of Hamiltonian systems, Electron. J. differential equations, 1997, 1-19, (1997) · Zbl 0890.34040 [6] Coti Zelati, V.; Rabinowitz, P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. amer. math. soc.., 4, 693-727, (1991) · Zbl 0744.34045 [7] Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 1095-1113, (1995) · Zbl 0840.34044 [8] Ding, Y.; Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dynam. systems appl., 2, 131-145, (1993) · Zbl 0771.34031 [9] Fei, G., The existence of homoclinic orbits for Hamiltonian sytems with the potential changing sign, Chinese ann. of math. ser. B, 17, 403-410, (1996) · Zbl 0871.58036 [10] Felmer, P.L.; Silva, E.A.De B.E, Homoclinic and periodic orbits for Hamiltonian systems, Ann. sc. norm. super Pisa cl. sci., 26, 4, 285-301, (1998) · Zbl 0919.58026 [11] Korman, P.; Lazer, A.C., Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. differential equations, 1994, 1-10, (1994) [12] Ou, Z.; Tang, C., Existence of homoclinic solutions for the second order Hamiltonian systems, J. math. anal. appl., 291, 203-213, (2004) · Zbl 1057.34038 [13] Paturel, E., Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. var. partial differential equations, 12, 117-143, (2001) · Zbl 1052.37049 [14] Rabinowitz, P.H., Homoclinic orbits for a class of Hamiltonian systems, Proc. roy. so. Edinburgh sect. A, 114, 33-38, (1990) · Zbl 0705.34054 [15] Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499, (1990) · Zbl 0707.58022 [16] Wu, S.; Liu, J., Homoclinic orbits for second order Hamiltonian system with quadratic growth, Appl. math. J. Chinese univ. ser. B, 10, 399-410, (1995) · Zbl 0841.34051 [17] Yang, J.; Zhang, F., Infinitely many homoclinic orbits for the second order Hamiltonian systems with super-quadratic potentials, Nonlinear anal. RWA, 10, 1417-1423, (2009) · Zbl 1162.34328 [18] Zou, W., Infinitely many homoclinic orbits for the second-order Hamiltonian systems, Appl. math. lett., 16, 1283-1287, (2003) · Zbl 1039.37044 [19] Zou, W., Variant Fountain theorems and their applications, Manuscripta math., 104, 343-358, (2001) · Zbl 0976.35026 [20] Kato, T., Perturbation theory for linear operators, (1980), Springer-Verlag New York [21] Rabinowitz, P.H., () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.