×

zbMATH — the first resource for mathematics

Necessary covariance conditions for a one-field Lax pair. (English) Zbl 1178.37080
Theor. Math. Phys. 144, No. 1, 985-994 (2005); translation from Teor. Mat. Fiz. 144, No. 1, 122-132 (2005).
Summary: We study the covariance with respect to Darboux transformations of polynomial differential and difference operators with coefficients given by functions of one basic field. In the scalar (abelian) case, the functional dependence is established by equating the Frechet differential (the first term of the Taylor series on the prolonged space) to the Darboux transform; a Lax pair for the Boussinesq equation is considered. For a pair of generalized Zakharov-Shabat problems (with differential and shift operators) with operator coefficients, we construct a set of integrable nonlinear equations together with explicit dressing formulas. Non-Abelian special functions are fixed as the fields of the covariant pairs. We introduce a difference Lax pair, a combined gauge-Darboux transformation, and solutions of the Nahm equations.
MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. B. Matveev, Lett. Math. Phys., 3, 213, 217, 503 (1979). · Zbl 0418.35005 · doi:10.1007/BF00405295
[2] A. A. Zaitsev and S. B. Leble, Rep. Math. Phys., 46, 165 (2000); math-ph/9903005 (1999). · Zbl 1049.12007 · doi:10.1016/S0034-4877(01)80020-3
[3] F. di Bruno, Pure Appl. Math., 1, 359 (1857).
[4] S. Leble, ”Darboux transforms algebras in 2+1 dimensions,” in: Nonlinear Evolution Equations and Dynamical Systems (Proc. 7th Workshop NEEDS-91, Baia Verde, Italy, June 19–29, 1991, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1992), p. 53. · Zbl 0941.37553
[5] S. B. Leble, Theor. Math. Phys., 128, 890 (2001). · Zbl 0989.35117 · doi:10.1023/A:1010450116497
[6] F. Lambert, S. Leble, and J. Springael, Glasgow Math. J. A, 43, 55 (2001).
[7] F. Lambert, I. Loris, and J. Springael, Inverse Problems, 17, 1067 (2001). · Zbl 0986.35096 · doi:10.1088/0266-5611/17/4/333
[8] M. A. Salle, Theor. Math. Phys., 53, 227 (1982); S. B. Leble and M. A. Salle, Dokl. Akad. Nauk SSSR, 284, 110 (1985).
[9] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991). · Zbl 0744.35045
[10] C. Roger and W. K. Schiff, Backlund and Darboux Transformations, Cambridge Univ. Press, Cambridge (2002).
[11] V. B. Matveev, Am. Math. Soc. Transl. 2, 201, 179 (2000).
[12] P. J. Olver and V. V. Sokolov, Comm. Math. Phys., 193, 245 (1998); Inverse Problems, 14, L5 (1998). · Zbl 0908.35124 · doi:10.1007/s002200050328
[13] A. V. Mikhailov and V. V. Sokolov, Theor. Math. Phys., 122, 72 (2000). · Zbl 0992.34071 · doi:10.1007/BF02551171
[14] R. H. Heredero, A. Shabat, and V. Sokolov, J. Phys. A, 36, L605 (2003). · Zbl 1076.37524 · doi:10.1088/0305-4470/36/47/L02
[15] A. B. Shabat, Theor. Math. Phys., 136, 1066 (2003). · Zbl 1178.37091 · doi:10.1023/A:1025057719859
[16] S. B. Leble and M. Czachor, Phys. Rev. E, 58, 7091 (1998). · doi:10.1103/PhysRevE.58.7091
[17] A. A. Andrianov, F. Cannata, M. V. Ioffe, and D. N. Nishnianidze, J. Phys. A, 30, 5037 (1997). · Zbl 0939.81004 · doi:10.1088/0305-4470/30/14/015
[18] N. Ustinov, S. Leble, M. Czachor, and M. Kuna, Phys. Lett. A, 279, 333 (2001). · Zbl 0972.81024 · doi:10.1016/S0375-9601(01)00013-5
[19] A. Minic, Phys. Lett. B, 536, 305 (2002). · Zbl 0995.81035 · doi:10.1016/S0370-2693(02)01865-8
[20] S. V. Manakov, Funct. Anal. Appl., 10, 328 (1977); M. Adler and P. van Moerbeke, Adv. Math., 38, 267 (1980). · Zbl 0358.70004 · doi:10.1007/BF01076037
[21] J. Cieslinski, M. Czachor, and N. Ustinov, J. Math. Phys., 44, 1763 (2003). · Zbl 1062.37065 · doi:10.1063/1.1554762
[22] S. Leble, ”Covariant forms of Lax one-field operators: From Abelian to non-commutative,” in: Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete (NATO Sci. Ser. II: Math. Phys. Chem., Vol. 201, L. Faddeev, P. van Moerbeke, and F. Lambert, eds.), Springer, Dordrecht (to appear August 2005); math-ph/0302053 (2003).
[23] S. Leble, ”Dressing chain equations associated with difference soliton systems,” in: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation, Axiomatics (D. Aerts, M. Czachor, and T. Durt, eds.), World Scientific, London (2002), p. 354. · Zbl 1068.39501
[24] J. Weiss, J. Math. Phys., 27, 2647 (1986). · Zbl 0632.35063 · doi:10.1063/1.527284
[25] A. P. Veselov and A. B. Shabat, Funct. Anal. Appl., 27, 81 (1993). · Zbl 0813.35099 · doi:10.1007/BF01085979
[26] V. E. Adler, V. G. Marikhin, and A. B. Shabat, Theor. Math. Phys., 129, 163 (2001). · Zbl 1028.00517 · doi:10.1023/A:1012858820688
[27] A. B. Shabat, Theor. Math. Phys., 121, 1367 (1999). · Zbl 0987.35133 · doi:10.1007/BF02557235
[28] W. Nahm, Phys. Lett. B, 90, 413 (1980); N. J. Hitchin, Comm. Math. Phys., 89, 145 (1983). · doi:10.1016/0370-2693(80)90961-2
[29] R. W. Atherton and G. M. Homsy, Stud. Appl. Math., 54, 31 (1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.