zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the solutions of the system of difference equations $x_{n+1}=\max\{A/x_n,y_n/x_n\}$, $y_{n+1}=\max\{A/y_n,x_n/y_n\}$. (English) Zbl 1178.39013
Summary: We study the behavior of the solutions of the following system of difference equations $$x_{n+1}=\max\{A/x_n,y_n/x_n\},\quad y_{n+1}=\max\{A/y_n,x_n/y_n\}$$ where the constant $A$ and the initial conditions are positive real numbers.

MSC:
39A20Generalized difference equations
WorldCat.org
Full Text: DOI
References:
[1] A. M. Amleh, Boundedness periodicity and stability of some difference equations, Ph.D. thesis, University of Rhode Island, Kingston, Rhode Island, USA, 1998.
[2] C. \cCinar, S. Stević, and \DI. Yal\ccınkaya, “On positive solutions of a reciprocal difference equation with minimum,” Journal of Applied Mathematics & Computing, vol. 17, no. 1-2, pp. 307-314, 2005. · Zbl 1074.39002 · doi:10.1007/BF02936057
[3] S. N. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, 1996. · Zbl 0840.39002
[4] J. Feuer, “Periodic solutions of the Lyness max equation,” Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 147-160, 2003. · Zbl 1042.39002 · doi:10.1016/S0022-247X(03)00587-0
[5] A. Geli\csken, C. \cCinar, and R. Karata\cs, “A note on the periodicity of the Lyness max equation,” Advances in Difference Equations, vol. 2008, Article ID 651747, 5 pages, 2008. · Zbl 1149.39004 · doi:10.1155/2008/651747 · eudml:54700
[6] A. Geli\csken, C. \cCinar, and \DI. Yal\ccınkaya, “On the periodicity of a difference equation with maximum,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 820629, 11 pages, 2008. · Zbl 1149.39005 · doi:10.1155/2008/820629 · eudml:129353
[7] E. Janowski, V. L. Kocic, G. Ladas, and G. Tzanetopoulos, “Global behavior of solutions of xn+1=[max{xnk,A}]/xn - 1,” Journal of Difference Equations and Applications, vol. 3, no. 3-4, pp. 297-310, 1998. · Zbl 0895.39004 · doi:10.1080/10236199808808105
[8] M. R. S. Kulenević and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjecture, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002. · Zbl 0981.39011
[9] D. P. Mishev, W. T. Patula, and H. D. Voulov, “A reciprocal difference equation with maximum,” Computers & Mathematics with Applications, vol. 43, no. 8-9, pp. 1021-1026, 2002. · Zbl 1050.39015 · doi:10.1016/S0898-1221(02)80010-4
[10] L. A. Moybé and A. S. Kapadia, Difference Equations with Public Health Applications, CRC Press, New York, NY, USA, 2000.
[11] G. Papaschinopoulos and V. Hatzifilippidis, “On a max difference equation,” Journal of Mathematical Analysis andApplications, vol. 258, no. 1, pp. 258-268, 2001. · Zbl 0986.39005 · doi:10.1006/jmaa.2000.7377
[12] G. Papaschinopoulos, J. Schinas, and V. Hatzifilippidis, “Global behavior of the solutions of a max-equation and of a system of two max-equations,” Journal of Computational Analysis and Applications, vol. 5, no. 2, pp. 237-254, 2003. · Zbl 1034.39008 · doi:10.1023/A:1022833112788
[13] W. T. Patula and H. D. Voulov, “On a max type recurrence relation with periodic coefficients,” Journal of Difference Equations and Applications, vol. 10, no. 3, pp. 329-338, 2004. · Zbl 1050.39017 · doi:10.1080/10236190310001659741
[14] G. Stefanidou and G. Papaschinopoulos, “The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation,” Information Sciences, vol. 176, no. 24, pp. 3694-3710, 2006. · Zbl 1122.39008 · doi:10.1016/j.ins.2006.02.006
[15] S. Stević, “On the recursive sequence xn+1=max{c,xnp/xn - 1p},” Applied Mathematics Letters, vol. 21, no. 8, pp. 791-796, 2008. · Zbl 1152.39012 · doi:10.1016/j.aml.2007.08.008
[16] D. \cSimsek, C. \cCinar, and \DI. Yal\ccınkaya, “On the solutions of the difference equation xn+1=max{1/xn - 1,xn - 1},” International Journal of Contemporary Mathematical Sciences, vol. 1, no. 9-12, pp. 481-487, 2006.
[17] D. \cSimsek, B. Demir, and A. S. Kurbanlı, “xn+1=max{1/xn,yn/xn},yn+1=max{1/yn,xn/yn},” Denklem Sistemlerinin \cCözümleri Üzerine. In press.
[18] C. T. Teixeria, Existence stability boundedness and periodicity of some difference equations, Ph.D. thesis, University of Rhode Island, Kingston, Rhode Island, USA, 2000.
[19] S. Valicenti, Periodicity and global attractivity of some difference equations, Ph.D. thesis, University of Rhode Island, Kingston, Rhode Island, USA, 1999.
[20] H. D. Voulov, “On the periodic character of some difference equations,” Journal of Difference Equations and Applications, vol. 8, no. 9, pp. 799-810, 2002. · Zbl 1032.39004 · doi:10.1080/1023619021000000780
[21] H. D. Voulov, “Periodic solutions to a difference equation with maximum,” Proceedings of the American Mathematical Society, vol. 131, no. 7, pp. 2155-2160, 2003. · Zbl 1019.39005 · doi:10.1090/S0002-9939-02-06890-9
[22] \DI. Yal\ccınkaya, B. D. Iri\vcanin, and C. \cCinar, “On a max-type difference equation,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 47264, 10 pages, 2007. · Zbl 1152.39016 · doi:10.1155/2007/47264
[23] \DI. Yal\ccınkaya, C. \cCinar, and M. Atalay, “On the solutions of systems of difference equations,” Advances in Difference Equations, vol. 2008, Article ID 143943, 9 pages, 2008. · Zbl 1146.39023 · doi:10.1155/2008/143943
[24] X. Yan, X. Liao, and C. Li, “On a difference equation with maximum,” Applied Mathematics and Computation, vol. 181, pp. 1-5, 2006. · Zbl 1148.39303 · doi:10.1016/j.amc.2006.01.005