zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hamiltonian properties on the class of hypercube-like networks. (English) Zbl 1178.68043
Summary: Hamiltonian properties of hypercube variants are explored. Variations of the hypercube networks have been proposed by several researchers. In this paper, we show that all hypercube variants are hamiltonian-connected or hamiltonian-laceable. And we also show that these graphs are bipancyclic.

MSC:
68M10Network design and communication of computer systems
WorldCat.org
Full Text: DOI
References:
[1] Abraham, S.; Padmanabhan, K.: The twisted cube topology for multiprocessors: a study in network asymmetry. J. parallel distrib. Comput. 13, No. 1, 104-110 (September 1991)
[2] Chedid, F. B.; Chedid, R. B.: A new variation on hypercubes with smaller diameter. Inform. process. Lett. 46, No. 6, 275-280 (July 1993) · Zbl 0778.68013
[3] Cull, P.; Larson, S. M.: The ”Möbius cubes”: improved cubelike networks for parallel computation. Proc. of the 6th int. Parallel processing symp., beverly hills, CA, 610-615 (March 1992)
[4] Cull, P.; Larson, S. M.: On generalized twisted cubes. Inform. process. Lett. 55, No. 1, 53-55 (July 1995) · Zbl 0875.68141
[5] Das, R. K.; Mukhopadhyaya, K.; Sinha, B. P.: A new family of bridged and twisted hypercubes. IEEE trans. Comput. 43, No. 10, 1240-1247 (October 1994) · Zbl 1068.68578
[6] Efe, K.: A variation on the hypercube with lower diameter. IEEE trans. Comput. 40, No. 11, 1312-1316 (November 1991)
[7] Efe, K.; Blackwell, P. K.; Slough, W.; Shiau, T.: Topological properties of the crossed cube architecture. Parallel comput. 20, No. 12, 1763-1775 (December 1994) · Zbl 0875.68162
[8] Esfahanian, A. -H.; Ni, L. M.; Sagan, B. E.: The twisted n-cube with application to multiprocessing. IEEE trans. Comput. 40, No. 1, 88-93 (January 1991)
[9] Gould, R. J.: Updating the Hamiltonian problem--a survey. J. graph theory 15, No. 2, 121-157 (1991) · Zbl 0746.05039
[10] Kim, J.; Shin, K. G.: Operationally enhanced folded hypercubes. IEEE trans. Parallel distrib. Syst. 5, No. 12, 1310-1316 (December 1994)
[11] Leighton, F. T.: Parallel algorithms and architectures: arrays, trees and hypercubes. (1992) · Zbl 0743.68007
[12] Park, J. -H.: Strong hamiltonicity of recursive circulants. J. Korea inf. Sci. soc. 28, No. 8, 742-744 (August 2001)
[13] Park, J. -H.; Chwa, K. -Y.: Recursive circulants and their embeddings among hypercubes. Theoret. comput. Sci. 244, No. 1, 35-62 (August 2000) · Zbl 0945.68003
[14] Seitz, C. L.: Concurrent VLSI architectures. IEEE trans. Comput. 33, No. 12, 1247-1265 (December 1984)
[15] Singhvi, N. K.; Ghose, K.: The mcube: A symmetrical cube based network with twisted links. Proc. of the 9th int. Parallel processing symp., 11-16 (April 1995)
[16] Vaidya, A. S.; Rao, P. S. N.; Shankar, S. R.: A class of hypercube-like networks. Proc. of the 5th symp. On parallel and distributed processing, 800-803 (December 1993)
[17] Zheng, S. Q.; Latifi, S.: Optimal simulation of linear multiprocessor architectures on multiply-twisted cube using generalized gray codes. IEEE trans. Parallel distrib. Syst. 7, No. 6, 612-619 (June 1996)