zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fluid-structure interaction using the particle finite element method. (English) Zbl 1178.76230
Summary: A new approach to solve fluid-structure interaction problems is described. Both, the equations of motion for fluids and for solids have been approximated using a material (Lagrangian) formulation. To approximate the partial differential equations representing the fluid motion, the shape functions introduced by the meshless finite element method (MFEM) have been used. Thus, the continuum is discretized into particles that move under body forces (gravity) and surface forces (due to the interaction with neighboring particles). All the physical properties such as density, viscosity, conductivity, etc., as well as the variables that define the temporal state such as velocity and position and also other variables like temperature are assigned to the particles and are transported with the particle motion. The so called particle finite element method (PFEM) provides a very advantageous and efficient way for solving contact and free-surface problems, highly simplifying the treatment of fluid-structure interactions.

76M10Finite element methods (fluid mechanics)
76M28Particle methods and lattice-gas methods (fluid mechanics)
74F10Fluid-solid interactions
Full Text: DOI
[1] Aubry, R.; Idelsohn, S. R.; Oñate, E.: Particle finite element method in fluid mechanics including thermal convection-diffusion. Comput. struct. 83, 1459-1475 (2004)
[2] Belytschko, T.; Gu, L.; Lu, Y. Y.: Fracture and crack growth by element free Galerkin methods. Model. simulat. Mater sci. Engrg. 2, 519-534 (1994)
[3] Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. comput. Phys. 170, 112-140 (2001) · Zbl 1002.76063
[4] Codina, R.; Cervera, M.: Block-iterative algorithms for nonlinear coupled problems. Advanced computational methods in structural mechanics (1996) · Zbl 1071.76536
[5] C. Duarte, J.D. Oden, Hp clouds--a meshless method to solve boundary value problems, Technical Report 95-05, Texas institute for Computational and Applied Mechanics, University of Texas, 1995.
[6] Edelsbrunner, H.; Mucke, E. P.: Three-dimensional alpha-shape. ACM trans. Graph. 3, 43-72 (1994) · Zbl 0806.68107
[7] Idelsohn, S. R.; Oñate, E.; Calvo, N.; Del Pin, F.: The meshless finite element method. Int. J. Numer. methods engrg. 58, No. 4 (2003) · Zbl 1035.65129
[8] Idelsohn, S. R.; Oñate, E.; Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. methods engrg. 61, No. 7, 964-989 (2004) · Zbl 1075.76576
[9] Idelsohn, S. R.; Calvo, N.; Oñate, E.: Polyhedrization of an arbitrary 3D point set. Comput. method appl. Mech. engrg. 192, 2649-2667 (2003) · Zbl 1040.65019
[10] Koshizuka, S.; Oka, Y.: Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl. engrg. Sci. 123, 421-434 (1996)
[11] R. Löhner, J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman, D. Pelessone, in: Adaptive Embedded Unstructured Grid Methods, AIAA-03-1116, 2003. · Zbl 1060.76574
[12] Mok, D. P.; Wall, W. A.: Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. Trends in computational structural mechanics (2001)
[13] Gingold, R. A.; Monaghan, J. J.: Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of computational physics 46, 429-453 (1981) · Zbl 0487.76010
[14] Gingold, R. A.; Monaghan, J. J.: Smoothed particle hydrodynamics, theory and application to non-spherical stars. Mon. not R. Astron. soc. 181, 375-389 (1997) · Zbl 0421.76032
[15] Nayroles, B.; Touzot, G.; Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Computat. mech. 10, 307-318 (1992) · Zbl 0764.65068
[16] Oñate, E.: Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. methods appl. Mech. engrg. 151, No. 1-2, 233-267 (1998) · Zbl 0916.76060
[17] Oñate, E.: A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput. methods appl. Mech. engrg. 182, No. 1-2, 355-370 (2000) · Zbl 0977.76050
[18] Oñate, E.: Possibilities of finite calculus in computational mechanics. Int. J. Numer. methods engrg. 60, No. 1, 255-281 (2004) · Zbl 1060.76576
[19] Oñate, E.; Idelsohn, S. R.; Del Pin, F.; Aubry, R.: The particle finite element method: an overview. Artíc. en revistas. 1, No. 2, 267-307 (2004) · Zbl 1182.76901
[20] Piperno, S.; Farhat, C.; Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic problems. Comput. methods appl. Mech. engrg. 124, 79-112 (1995) · Zbl 1067.74521
[21] Radovitzky, R.; Ortiz, M.: Lagrangian finite element analysis of a Newtonian flows. Int. J. Numer. engrg. 43, 607-619 (1998) · Zbl 0945.76047
[22] Ramaswamy, B.; Kawahara, M.: Lagrangian finite element analysis of Newtonian fluid flows. Int. J. Numer. methods fluids 7, 953-984 (1987) · Zbl 0622.76031
[23] Rugonyi, S.; Bathe, K. J.: On the analysis of fully-coupled fluid flows with structural interactions-a coupling and condensation procedure. Int. J. Comput civil struct. Engrg. 1, 29-41 (2000)
[24] Rugonyi, S.; Bathe, K. J.: On finite element analysis of fluid flows fully coupled with structural interactions. Comput. model. Simulat. engrg. (CMES) 2, 195-212 (2001)
[25] Souli, M.; Ouahsine, A.; Lewin, L.: Arbitrary Lagrangian-Eulerian formulation for fluid-structure interaction problems. Comput. methods appl. Mech. engrg. 190, 659-675 (2000) · Zbl 1012.76051
[26] Sukumar, N.; Moran, B.; Belytschko, T.: The natural element method in solid mechanics. Int. J. Numer. methods engrg. 43, 839-887 (1998) · Zbl 0940.74078
[27] Zhang, H.; Bathe, K. J.: Direct and iterative computing of fluid flows fully coupled with structures. Computat. fluid solid mech. (2001)