×

A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. (English) Zbl 1178.76309

Summary: This paper presents a Newton-Krylov approach applied to a Schur complement formulation for the analysis and design sensitivity analysis of systems undergoing fluid-structure interaction. This solution strategy is studied for a three-field formulation of an aeroelastic problem under steady-state conditions and applied to the design optimization of three-dimensional wing structures. A Schur-Krylov solver is introduced for computing the design sensitivities. Comparing the Schur-Newton-Krylov solver with conventional Gauss-Seidel schemes shows that the proposed approach significantly improves robustness and convergence rates, in particular for problems with strong fluid-structure coupling. In addition, the numerical efficiency of the aeroelastic sensitivity analysis can be typically improved by more than a factor of 1.5, especially if high accuracy is required.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ()
[2] Sobieszczanski-Sobieski, J.; Haftka, R.T., Multidisciplinary aerospace design optimization: survey of recent developments, Struct. optim., 14, 1-23, (1997)
[3] Farhat, C.; Geuzaine, P.; Brown, G., Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter, Comput. fluids, 32, 3-29, (2003) · Zbl 1009.76518
[4] J. Reuther, J. Alonso, J. Martins, S. Smith, A coupled aero-structural optimization method for complete aircraft configuration, AIAA 99-0187, 1999.
[5] G.-W. Hou, A. Sathyanarayana, Analytical sensitivity analysis of a statical aeroelastic wing, in: AIAA 2000-4824, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000/Long Beach, CA, 2000.
[6] Maute, K.; Nikbay, M.; Farhat, C., Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems, Aiaa j., 39, 11, 2051-2061, (2001)
[7] Lund, E.; Møller, H.; Jakobsen, L., Shape optimization of fluid-structure interaction problems with large displacements and two-equation turbulence models, (), Available from:
[8] Lund, E.; Moller, H.; Jakobsen, L., Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence, Multidisciplin. struct. optim., 25, 5-6, 383-392, (2003)
[9] Maute, K.; Nikbay, M.; Farhat, C., Sensitivity analysis and design optimization of three-dimensional nonlinear aeroelastic systems by the adjoint method, Int. J. numer. methods engrg., 56, 6, 911-933, (2003) · Zbl 1078.74633
[10] Maute, K.; Allen, M., Conceptual design of aeroelastic structures by topology optimization, Multidisciplin. struct. optim., 27, 27-42, (2004)
[11] J. Martins, J. Alonso, High-fidelity aero-structural design optimization of a supersonic business jet, in: AIAA 2002-1483, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 22-25, 2002, Denver, CO, 2002.
[12] Ghattas, O.; Li, X., Domain decomposition methods for sensitivity analysis of a nonlinear aeroelasticity problem, Int. J. comput. fluid dynam., 11, 112-130, (1998) · Zbl 0939.74064
[13] Saad, Y.; Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[14] Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. methods appl. mech. engrg., 193, 1-23, (2004) · Zbl 1137.74439
[15] Kim, J.Y.; Aluru, N.R.; Tortorelli, D.A., Improved multi-level Newton solvers for fully coupled multi-physics problems, J. numer. methods engrg., 58, 463-480, (2003) · Zbl 1032.74704
[16] Gerbeau, J.; Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, Math. model. numer. anal., 37, 4, 631-647, (2003) · Zbl 1070.74047
[17] Egartner, W.; Schulz, V., Partially reduced SQP methods for optimal turbine and compressor blade design, () · Zbl 1068.76543
[18] Orozco, C.; Ghattas, O., A reduced SAND method for optimal design of non-linear structures, Int. J. numer. methods engrg., 40, 2759-2774, (1997) · Zbl 0895.73050
[19] C. Gumbert, G.-W. Hou, P. Newman, Simultaneous aerodynamic analysis and design optimization (SAADO) for a 3D flexible wing, in: AIAA 2001-1107, 39th Aerospace Sciences Meeting and Exhibit, January 8-11, 2001, Reno, NV, 2001.
[20] Farhat, C.; Lesoinne, M.; Maman, N., Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution, Int. J. numer. methods engrg., 21, 10, 807-835, (1995) · Zbl 0865.76038
[21] Farhat, C.; Lesoinne, M.; LeTallec, P., Load and motion transfer algorithms for fluid-structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. methods appl. mech. engrg., 157, 95-114, (1998) · Zbl 0951.74015
[22] Batina, J.T., Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis, Aiaa j., 29, 3, 327-333, (1991)
[23] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. struct., 80, 305-316, (2002)
[24] Ortega, J.M.; Rheinboldt, W.C., Iterative solution of nonlinear equations in several variables, (1970), Academic Press London · Zbl 0241.65046
[25] Vrahatis, M.N.; Magoulas, G.D.; Plagianakos, V.P., From linear to nonlinear iterative methods, Appl. numer. math., 45, 59-77, (2003) · Zbl 1022.65060
[26] Kelley, C.T.; Keyes, D.E., Convergence analysis of pseudo-transient continuation, SIAM J. numer. anal., 35, 2, 508-523, (1998) · Zbl 0911.65080
[27] D.P. Mok, W.A. Wall, E. Ramm, Accelerated iterative substructure schemes for instationary fluid-structure interaction, in: First MIT Conference on Computational Fluid and Solid Mechanics, 2001, pp. 1325-1328.
[28] LeTallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 3039-3067, (2001) · Zbl 1001.74040
[29] W. Wall, D. Mok, E. Ramm, Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures, in: Proceedings of the European Conference on Computational Mechanics, ECCM 99, September 1999, Munich, Germany, 1999.
[30] L.B. Wigton, N.J. Yu, D.P. Young, GMRES acceleration of computational fluid dynamics codes, AIAA Technical Report, 1985, pp. 85-1494.
[31] C. Michler, E. van Brummelen, R. de Borst, Subiteration-preconditioned GMRES for fluid-structure interaction, in: Proceedings of the 7th US National Congress on Computational Mechanics, July 27-31, 2003, Albuquerque, NM, 2003. · Zbl 1176.74217
[32] Dembo, R.; Eisenstat, S.; Steihaug, T., Inexact Newton methods, SIAM J. number. anal., 19, 400-408, (1982) · Zbl 0478.65030
[33] Eisenstat, S.C.; Walker, H.F., Choosing the forcing terms in an inexact Newton method, SIAM J. sci. comput., 17, 16-32, (1996) · Zbl 0845.65021
[34] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. methods appl. mech. engrg., 182, 499-515, (2000) · Zbl 0991.74069
[35] X.-C. Cai, C. Farhat, M. Sarkis, A minimum overlap restricted additive Schwarz preconditioner and applications in 3D flow simulations, in: X.-C.C.J. Mandel, C. Farhat (Eds.), The Tenth International Conference on Domain Decomposition Methods for Partial Differential Equations, Contemporary Mathematics, vol. 218, 1998. · Zbl 0936.76036
[36] Kreisselmeier, G.; Steinhauser, R., Application of vector performance optimization to a robust control loop design for a fighter aircraft, Int. J. control, 37, 251-284, (1983) · Zbl 0504.93037
[37] M. Barcelos, H. Bavestrello, K. Maute, Efficient solution strategies for steady-state aeroelastic analysis and design sensitivity analysis, in: 10th AIAA/ISSMO Multidisciplinary Optimization Conference, August 30-September 1, 2004, Albany, NY, 2004.
[38] M. Sandford, D. Seidel, C. Eckstrom, C. Spain, Geometrical and structural properties of an aeroelastic research wing (ARW-2), NASA-TM-4110, 1989.
[39] Bletzinger, K.-U.; Kimmich, S.; Ramm, E., Efficient modeling in shape optimal design, Comput. syst. engrg., 2, 483-495, (1991)
[40] Maute, K.; Schwarz, S.; Ramm, E., Structural optimization—the interaction between form and mechanics, J. appl. math. mech. ZAMM, 79, 651-673, (1999) · Zbl 0943.74052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.