×

zbMATH — the first resource for mathematics

Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein’s field equations. (English) Zbl 1178.83010
Theor. Math. Phys. 143, No. 2, 720-740 (2005); translation from Teor. Mat. Fiz. 143, No. 2, 278-304 (2005).
Summary: We show that for the fields depending on only two of the four space-time coordinates, the spaces of local solutions of various integrable reductions of Einstein’s field equations are the subspaces of the spaces of local solutions of the “null-curvature” equations selected by universal (i.e., solution-independent conditions imposed on the canonical (Jordan) forms of the desired matrix variables. Each of these spaces of solutions can be parameterized by a finite set of holomorphic functions of the spectral parameter, which can be interpreted as a complete set of the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. We show that both the direct and inverse problems of such a map, i.e., the problem of finding the monodromy data for any local solution of the null-curvature equations for the given Jordan forms and also of proving the existence and uniqueness of such a solution for arbitrary monodromy data, can be solved unambiguously (the “monodromy transform”). We derive the linear singular integral equations solving the inverse problem and determine the explicit forms of the monodromy data corresponding to the spaces of solutions of Einstein’s field equations.

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] V. A. Belinskii and V. E. Zakharov, JETP, 48, 985 (1978); 50, 1 (1979).
[2] B. K. Harrison, Phys. Rev. Lett., 41, 1197 (1978).
[3] G. Neugebauer, J. Phys. A, 12, L67 (1979); 13, 1737 (1980).
[4] I. Hauser and F. J. Ernst, Phys. Rev. D, 20, 362 (1979).
[5] W. Kinnersley, J. Math. Phys., 18, 1529 (1977).
[6] W. Kinnersley and D. M. Chitre, J. Math. Phys., 18, 1538 (1977).
[7] W. Kinnersley and D. M. Chitre, J. Math. Phys., 19, 1926 (1978).
[8] I. Hauser and F. J. Ernst, Phys. Rev. D, 20, 1783 (1979).
[9] G. A. Alekseev, JETP Lett., 32, 277 (1980).
[10] G. A. Alekseev, Sov. Phys. Dokl., 28, 133 (1983).
[11] V. A. Belinskii, JETP, 50, 623 (1979).
[12] V. A. Belinskii, JETP Lett., 30, 28 (1979).
[13] I. Bakas, Nucl. Phys. B, 428, 374 (1994); hep-th/9402016 (1994). · Zbl 1049.83531
[14] A. Kumar and K. Ray, Phys. Lett. B, 358, 223 (1995).
[15] D. V. Gal’tsov, Phys. Rev. Lett., 74, 2863 (1995); D. V. Gal’tsov and O. V. Kechkin, Phys. Lett. B, 361, 52 (1995); Phys. Rev. D, 54, 1656 (1996); D. V. Gal’tsov and S. A. Sharakin, Phys. Lett. B, 399, 250 (1997). · Zbl 1020.83665
[16] A. Das, J. Maharana, and A. Melikyan, ”Monodromy, duality, and integrability of two dimensional string effective action,” hep-th/0210012 (2002). · Zbl 1096.81525
[17] G. A. Alekseev, ”Integrability of generalized (matrix) Ernest equations in string theory,” Theor. Math. Phys. (to appear); hep-th/0410246 (2004).
[18] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (2nd ed.), Cambridge Univ. Press, Cambridge (2003). · Zbl 1057.83004
[19] V. Belinski and E. Verdaguer, Gravitational Solitons, Cambridge Univ. Press, Cambridge (2001).
[20] G. A. Alekseev, Proc. Steklov Math. Inst., 176, 215 (1988).
[21] N. R. Sibgatullin, Oscillations and Waves in Strong Gravitational and Electromagnetic Fields [in Russian], Nauka, Moscow (1984); English transl., Springer, Berlin (1991). · Zbl 0941.83500
[22] G. Neugebauer, Phys. Lett. A, 86, No.2, 91 (1981).
[23] G. A. Alekseev, Sov. Phys. Dokl., 30, 565 (1985).
[24] G. A. Alekseev, ”Monodromy transform approach to solution of some field equations in general relativity and string theory,” in: Proc. ”Nonlinearity, Integrability, and All That: Twenty Years After NEEDS’79” (Lecce, Italy, July 1–10, 1999, M. Boiti, L. Martina, F. Pempinelly, B. Prinary, and G. Soliani, eds.), World Scientific, Singapore (2000), p. 12; gr-qc/9911045 (1999).
[25] G. A. Alekseev, ”Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters,” in: Abstracts of Contributed Papers, 13th Intl. Conf. on General Relativity and Gravitation (P. W. Lamberty and O. E. Ortiz, eds.), Huerta Grande, Cordoba, Argentina (1993), p. 3.
[26] G. A. Alekseev and A. A. Garcia, Phys. Rev. D, 53, 1853 (1996).
[27] G. A. Alekseev, ”Integrability f the boundary value problems for the Ernst equations,” in: Nonlinear Evolution Equations and Dynamical Systems (Proc. Intl. Workshop NEEDS-92, Dubna, 1992, V. Makhankov, I. Puzynin, and O. Pashaev, eds.), World Scientific, Singapore (1993), p. 5.
[28] F. J. Ernst, Phys. Rev., 167, 1175 (1968); 168, 1415 (1968).
[29] I. Hauser and F. J. Ernst, J. Math. Phys., 21, 1126 (1980).
[30] I. Hauser and F. J. Ernst, Gen. Relat. Gravit., 33, 195 (2001). · Zbl 0984.83008
[31] N. I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968); English transl. prev. ed., Nordhoff, Groningen (1967). · Zbl 0174.16201
[32] F. D. Gakhov, Boundary Problems [in Russian] (3rd ed.), Nauka, Moscow (1977); English transl. prev. ed.: Boundary Value Problems, Pergamon, Oxford (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.