zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anisotropic Bianchi-V cosmological models in Saez-Ballester theory of gravitation. (English) Zbl 1178.83080
Summary: A general approach for investigating Bianchi-V cosmological models is introduced in a scalar-tensor theory of gravitation proposed by Saez and Ballester in which the law of variation for Hubble’s parameter is taken into account. This variation for Hubble’s parameter that yields a constant value of deceleration parameter is then utilized to solve the field equations governing anisotropic Bianchi-V space-time filled with perfect fluid. Two types of exact solutions that correspond to singular and nonsingular models are presented. Finally, we arrive to the conclusion that the universe decelerates for positive value of deceleration parameter whereas it accelerates for negative one. The behaviors of observationally important parameters are discussed in detail. Exact expressions for look-back time, luminosity distance and event horizon versus redshift are derived and their significance are discussed in detail. It has been observed that the solutions are compatible with the results of recent observations.

83F05Relativistic cosmology
Full Text: DOI