×

zbMATH — the first resource for mathematics

A tutorial on geometric programming. (English) Zbl 1178.90270
Summary: A geometric program (GP) is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form. Recently developed solution methods can solve even large-scale GPs extremely efficiently and reliably; at the same time a number of practical problems, particularly in circuit design, have been found to be equivalent to (or well approximated by) GPs. Putting these two together, we get effective solutions for the practical problems. The basic approach in GP modeling is to attempt to express a practical problem, such as an engineering analysis or design problem, in GP format. In the best case, this formulation is exact; when this is not possible, we settle for an approximate formulation. This tutorial paper collects together in one place the basic background material needed to do GP modeling. We start with the basic definitions and facts, and some methods used to transform problems into GP format. We show how to recognize functions and problems compatible with GP, and how to approximate functions or data in a form compatible with GP (when this is possible). We give some simple and representative examples, and also describe some common extensions of GP, along with methods for solving (or approximately solving) them.

MSC:
90C25 Convex programming
Software:
CVX; GGPLAB; Mosek; TILOS; YALMIP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abou-El-Ata M, Kotb K (1997) Multi-item EOQ inventory model with varying holding cost under two restrictions: a geometric programming approach. Prod Plan Control 8(6):608–611 · doi:10.1080/095372897234948
[2] Abou-Seido A, Nowak B, Chu C (2004) Fitted Elmore delay: a simple and accurate interconnect delay model. IEEE Trans VLSI Syst 12(7):691–696 · Zbl 05459696 · doi:10.1109/TVLSI.2004.830932
[3] Abuo-El-Ata M, Fergany H, El-Wakeel M (2003) Probabilistic multi-item inventory model with varying order cost under two restrictions: a geometric programming approach. Int J Prod Econ 83(3):223–231 · doi:10.1016/S0925-5273(02)00327-4
[4] Adeli H, Kamal O (1986) Efficient optimization of space trusses. Comput Struct 24:501–511 · Zbl 0601.73088 · doi:10.1016/0045-7949(86)90327-5
[5] Aggarwal V, O’Reilly U-M (2006) Design of posynomial models for MOSFETs: symbolic regression using genetic algorithms. In: Riolo R, Soule T, Worzel B (eds) Genetic programming theory and practice. Genetic and evolutionary computation, vol 5. Springer, Ann Arbor, Chap 7
[6] Alejandre J, Allueva A, Gonzalez J (2004) A general alternative procedure for solving negative degree of difficulty problems in geometric programming. Comput Optim Appl 27(1):83–93 · Zbl 1045.90062 · doi:10.1023/B:COAP.0000004981.17496.9c
[7] Andersen E, Ye Y (1998) A computational study of the homogeneous algorithm for large-scale convex optimization. Comput Optim Appl 10(3):243–269 · Zbl 0914.90212 · doi:10.1023/A:1018369223322
[8] Avriel M (1980) Advances in geometric programming. Mathematical concept and methods in science and engineering, vol 21. Plenum, New York · Zbl 0432.00014
[9] Avriel M, Dembo R, Passy U (1975) Solution of generalized geometric programs. Int J Numer Methods Eng 9(1):149–168 · Zbl 0299.65035 · doi:10.1002/nme.1620090112
[10] Bazaraa M, Shetty C, Sherali H (1993) Non-linear programming: theory and algorithms. Wiley, New York · Zbl 0774.90075
[11] Beightler C, Phillips D (1976) Applied geometric programming. Wiley, New York · Zbl 0344.90034
[12] Ben-Tal A, Teboulle M (1986) Rate distortion theory with generalized information measures via convex programming duality. IEEE Trans Inf Theory 32(5):630–641 · Zbl 0618.94010 · doi:10.1109/TIT.1986.1057223
[13] Ben-Tal A, Teboulle M, Charnes A (1988) The role of duality in optimization problems involving entropy functionals. J Optim Theory Appl 58(2):209–223 · Zbl 0631.49007 · doi:10.1007/BF00939682
[14] Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific · Zbl 1015.90077
[15] Bhardwaj S, Vrudhula S (2005) Leakage minimization of nano-scale circuits in the presence of systematic and random variations. In: Proceedings of the 42nd IEEE/ACM design automation conference (DAC), pp 535–540, 2005
[16] Bhardwaj S, Cao Y, Vrudhula S (2006) Statistical leakage minimization through joint selection of gate sizes, gate lengths and threshold. In: Proceedings of the 12th conference on Asia and South Pacific design automation conference (ASP-DAC), pp 953–958, 2006
[17] Boche H, Stańczak S (2004) Optimal QoS tradeoff and power control in CDMA systems. In: Proceedings of the 23rd IEEE INFOCOM, pp 477–486, 2004
[18] Borah M, Owens R, Irwin M (1997) A fast algorithm for minimizing the Elmore delay to identified critical sinks. IEEE Trans Comput Aided Des Integr Circuits Syst 16(7):753–759 · Zbl 05447375 · doi:10.1109/43.644036
[19] Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge · Zbl 1058.90049
[20] Boyd S, Kim S-J, Patil D, Horowitz M (2005) Digital circuit optimization via geometric programming. Oper Res 53(6):899–932 · Zbl 1165.90655 · doi:10.1287/opre.1050.0254
[21] Boyd S, Kim S-J, Patil D, Horowitz M (2006) A heuristic method for statistical digital circuit sizing. In: Proceedings of the 31st SPIE international symposium on microlithography, San Jose, 2006
[22] Bricker D, Kortanek K, Xui L (1997) Maximum likelihood estimates with order restrictions on probabilities and odds ratios: a geometric programming approach. J Appl Math Decis Sci 1(1):53–65 · Zbl 0953.62027 · doi:10.1155/S1173912697000059
[23] Chan A, Turlea E (1978) An approximate method for structural optimisation. Comput Struct 8(3–4):357–363 · Zbl 0413.65049 · doi:10.1016/0045-7949(78)90179-7
[24] Chandra D, Singh V, Kar H (2004) Improved Routh-Padé approximants: a computer-aided approach. IEEE Trans Autom Control 49(2):292–296 · Zbl 1365.93217 · doi:10.1109/TAC.2003.822878
[25] Chen C-P, Wong D (1999) Greedy wire-sizing is linear time. IEEE Trans Comput Aided Des Integr Circuits Syst 18(4):398–405 · Zbl 05447719 · doi:10.1109/43.752924
[26] Chen C-P, Chu C, Wong D (1999) Fast and exact simultaneous gate and wire sizing by Lagrangian relaxation. IEEE Trans Comput Aided Des Integr Circuits Syst 18(7):1014–1025 · Zbl 05447599 · doi:10.1109/43.771182
[27] Chen T-Y (1992) Structural optimization using single-term posynomial geometric programming. Comput Struct 45(5–6):911–918 · Zbl 0769.73055 · doi:10.1016/0045-7949(92)90050-A
[28] Chen T-C, Pan S-R, Chang Y-W (2004) Timing modeling and optimization under the transmission line model. IEEE Trans Very Large Scale Integr Syst 12(1):28–41 · Zbl 05459796 · doi:10.1109/TVLSI.2003.820529
[29] Chen W, Hseih C-T, Pedram M (2000) Simultaneous gate sizing and placement. IEEE Trans Comput Aided Des Integr Circuits Syst 19(2):206–214 · Zbl 05447616 · doi:10.1109/43.828549
[30] Cheng T (1991) An economic order quantity model with demand-dependent unit production cost and imperfect production processes. IIE Trans 23(1):23 · doi:10.1080/07408179108963838
[31] Cheng H, Fang S-C, Lavery J (2002) Univariate cubic L 1 splines–A geometric programming approach. Math Methods Oper Res 56(2):197–229 · Zbl 1029.41003 · doi:10.1007/s001860200216
[32] Cheng H, Fang S-C, Lavery J (2005a) A geometric programming framework for univariate cubic L 1 smoothing splines. Ann Oper Res 133(1–4):229–248 · Zbl 1119.65012 · doi:10.1007/s10479-004-5035-9
[33] Cheng H, Fang S-C, Lavery J (2005b) A geometric programming framework for univariate cubic L 1 smoothing splines. J Comput Appl Math 174(2):361–382 · Zbl 1068.41014 · doi:10.1016/j.cam.2004.05.003
[34] Chiang M (2005a) Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control. IEEE J Sel Areas Commun 23(1):104–116 · doi:10.1109/JSAC.2004.837347
[35] Chiang M (2005b) Geometric programming for communication systems. Found Trends Commun Inf Theory 2(1–2):1–154 · Zbl 1143.90357 · doi:10.1561/0100000005
[36] Chiang M, Boyd S (2004) Geometric programming duals of channel capacity and rate distortion. IEEE Trans Inf Theory 50(2):245–258 · Zbl 1288.94032 · doi:10.1109/TIT.2003.822581
[37] Chiang M, Chan B, Boyd S (2002a) Convex optimization of output link scheduling and active queue management in QoS constrained packet sitches. In: Proceedings of the 2002 IEEE international conference on communications (ICC), pp 2126–2130, 2002
[38] Chiang M, Sutivong A, Boyd S (2002b) Efficient nonlinear optimization of queuing systems. In: Proceedings of the 2002 IEEE global telecommunications conference (GLOBECOM), pp 2425–2429, 2002
[39] Choi J-C, Bricker D (1995) Geometric programming with several discrete variables: algorithms employing generalized benders. Eng Optim 3:201–212 · doi:10.1080/03052159508941263
[40] Choi J, Bricker D (1996a) Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comp Oper Res 23(10):957–961 · Zbl 0873.90043 · doi:10.1016/0305-0548(96)00008-1
[41] Choi J-C, Bricker D (1996b) A heuristic procedure for rounding posynomial geometric programming solutions to discrete value. Comput Ind Eng 30(4):623–629 · doi:10.1016/0360-8352(95)00180-8
[42] Chu C, Wong D (1999) An efficient and optimal algorithm for simultaneous buffer and wire sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 18(9):1297–1304 · Zbl 05447721 · doi:10.1109/43.784121
[43] Chu C, Wong D (2001a) Closed form solutions to simultaneous buffer insertion/sizing and wire sizing. ACM Trans Des Autom Electron Syst 6(3):343–371 · Zbl 05456754 · doi:10.1145/383251.383256
[44] Chu C, Wong D (2001b) VLSI circuit performance optimization by geometric programming. Ann Oper Res 105(1–4):37–60 · Zbl 1008.90059 · doi:10.1023/A:1013345330079
[45] Clasen R (1963) The linear logarithmic programming problem. Rand Corp. Memo. RM-37-7-PR, June 1963
[46] Clasen R (1984) The solution of the chemical equilibrium programming problem with generalized benders decomposition. Oper Res 32(1):70–79 · Zbl 0538.90083 · doi:10.1287/opre.32.1.70
[47] Colleran D, Portmann C, Hassibi A, Crusius C, Mohan S, Boyd S, Lee T, Hershenson M (2003) Optimization of phase-locked loop circuits via geometric programming. In: Proceedings of the 2003 IEEE custom integrated circuits conference (CICC), pp 326–328, 2003
[48] Cong J, He L (1996) Optimal wire sizing for interconnects with multiple sources. ACM Trans Des Autom Electron Syst 1(4):478–511 · Zbl 01936166 · doi:10.1145/238997.239018
[49] Cong J, He L (1998) Theory and algorithm of local-refinement-based optimization with application to device and interconnect sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 18(4):406–420 · Zbl 05447757 · doi:10.1109/43.752925
[50] Cong J, Koh C-K (1994) Simultaneous driver and wire sizing for performance and power optimization. IEEE Trans Very Large Scale Integr Syst 2(4):408–423 · doi:10.1109/92.335010
[51] Cong J, Leung K-S (1995) Optimal wiresizing under Elmore delay model. IEEE Trans Comput Aided Des Integr Circuits Syst 14(3):321–336 · Zbl 05447768 · doi:10.1109/43.365123
[52] Cong J, Pan Z (2002) Wire width planning for interconnect performance optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 21(3):319–329 · Zbl 05447772 · doi:10.1109/43.986425
[53] Corstjens M, Doyle P (1979) Channel optimization in complex marketing systems. Manag Sci 25(10):1014–1025 · Zbl 0465.90057 · doi:10.1287/mnsc.25.10.1014
[54] Coudert O, Haddad R, Manne S (1996) New algorithms for gate sizing: a comparative study. In: Proceedings of 33rd IEEE/ACM design automation conference (DAC), pp 734–739, 1996
[55] Daems W, Gielen G, Sansen W (2003) Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 22(5):517–534 · Zbl 05447813 · doi:10.1109/TCAD.2003.810742
[56] Dantzig G, Johnson S, White W (1958) Shape-preserving properties of univariate cubic L 1 splines. Manag Sci 5(1):38–43 · Zbl 0995.90596 · doi:10.1287/mnsc.5.1.38
[57] Dawson J, Boyd S, Hershenson M, Lee T (2001) Optimal allocation of local feedback in multistage amplifiers via geometric programming. IEEE Trans Circuits Syst I Fundam Theory Appl 48(1):1–11 · doi:10.1109/81.903183
[58] Dembo R (1982) Sensitivity analysis in geometric programming. J Optim Theory Appl 37(1):1–21 · Zbl 0458.90065 · doi:10.1007/BF00934363
[59] Dhillon B, Kuo C (1991) Optimum design of composite hybrid plate girders. J Struct Eng 117(7):2088–2098 · doi:10.1061/(ASCE)0733-9445(1991)117:7(2088)
[60] Dinkel J, Kochenberger M, Wong S (1978) Sensitivity analysis procedures for geometric programs: Computational aspects. ACM Trans Math Softw 4(1):1–14 · Zbl 0379.90098 · doi:10.1145/355769.355770
[61] Duffin R (1970) Linearizing geometric programs. SIAM Rev 12(2):668–675 · Zbl 0229.90047 · doi:10.1137/1012043
[62] Duffin R, Peterson E, Zener C (1967) Geometric programming–theory and application. Wiley, New York · Zbl 0171.17601
[63] Dutta A, Rama D (1992) An optimization model of communications satellite planning. IEEE Trans Commun 40(9):1463–1473 · doi:10.1109/26.163567
[64] Ecker J (1980) Geometric programming: Methods, computations and applications. SIAM Rev 22(3):338–362 · Zbl 0438.90088 · doi:10.1137/1022058
[65] Edvall M, Hellman F (2005) User’s Guide for TOMLAP/GP. Available from http://tomlab.biz/docs/TOMLAB_GP.pdf
[66] El Barmi H, Dykstra R (1994) Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Stat Probab Lett 21(2):121–130 · Zbl 0801.62033 · doi:10.1016/0167-7152(94)90219-4
[67] Federowicz A, Rajgopal J (1999) Robustness of posynomial geometric programming optima. Math Program 85(2):421–431 · Zbl 0954.90051 · doi:10.1007/s101070050065
[68] Feigin P, Passy U (1981) The geometric programming dual to the extinction probability problem in simple branching processes. Ann Probab 9(3):498–503 · Zbl 0474.60069 · doi:10.1214/aop/1176994422
[69] Fishburn J, Dunlop A (1985) TILOS: a posynomial programming approach to transistor sizing. In: IEEE international conference on computer-aided design: ICCAD-85. Digest of technical papers, pp 326–328. IEEE Computer Society Press
[70] Floudas C (1999) Deterministic global optimization: theory, algorithms and applications. Kluwer Academic, Dordrecht
[71] Foschini G, Miljanic Z (1993) A simple distributed autonomous power control algorithm and its convergence. IEEE Trans Veh Technol 42(4):641–646 · doi:10.1109/25.260747
[72] Fuh C-D, Hu I (2000) Asymptotically efficient strategies for a stochastic scheduling problem with order constraints. Ann Stat 28(6):1670–1695 · Zbl 1105.62365 · doi:10.1214/aos/1015957475
[73] Gao Y, Wong D (1999) Optimal shape function for a bidirectional wire under Elmore delay model. IEEE Trans Comput Aided Des Integr Circuits Syst 18(7):994–999 · Zbl 05448061 · doi:10.1109/43.771180
[74] Grant M, Boyd S, Ye Y (2005) cvx: matlab software for disciplined convex programming. Available from www.stanford.edu/\(\sim\)boyd/cvx/
[75] Greenberg H (1995) Mathematical programming models for environmental quality control. Oper Res 43(4):578–622 · Zbl 0857.90016 · doi:10.1287/opre.43.4.578
[76] Hajela P (1986) Geometric programming strategies for large-scale structural synthesis. AIAA J 24(7):1173–1178 · Zbl 0647.73043 · doi:10.2514/3.9410
[77] Hariri A, Abou-El-Ata M (1997) Multi-item production lot-size inventory model with varying order cost under a restriction: a geometric programming approach. Prod Plan Control 8(2):179–182 · doi:10.1080/095372897235442
[78] Hassibi A, Hershenson M (2002) Automated optimal design of switched-capacitor filters. In: Proceedings of the 2002 design, automation and test in Europe conference and exhibition (DATE), p 1111, 2002
[79] Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin · Zbl 0973.62007
[80] Hershenson M (2002) Design of pipeline analog-to-digital converters via geometric programming. In: Proceedings of the 2002 IEEE/ACM international conference on computer aided design (ICCAD), pp 317–324, San Jose, 2002
[81] Hershenson M (2003) Analog design space exploration: efficient description of the design space of analog circuits. In: Proceedings of the 40th design automation conference (DAC), pp 970–973, 2003
[82] Hershenson M, Boyd S, Lee T (1998) GPCAD: A tool for CMOS op-amp synthesis. In: Proceedings of the 1998 IEEE/ACM international conference on computer aided design (ICCAD), pp 296–303, 1998
[83] Hershenson M, Hajimiri A, Mohan S, Boyd S, Lee T (1999) Design and optimization of LC oscillators. In: Proceedings of the 2000 IEEE/ACM international conference on computer-aided design (ICCAD), pp 65–69, 1999
[84] Hershenson M, Boyd S, Lee T (2001) Optimal design of a CMOS op-amp via geometric programming. IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):1–21 · Zbl 05448243 · doi:10.1109/43.905671
[85] Hitomi K (1996) Manufacturing systems engineering: a unified approach to manufacturing technology, production management, and industrial economics, 2nd edn. CRC Press, Boca Raton
[86] Horowitz M, Alon E, Patil D, Naffziger S, Kumar R, Bernstein K (2005) Scaling, power, and the future of CMOS. In: Proceedings of the 2005 IEEE international electron devices meeting (IEDM), pp 9–15, 2005
[87] Hsiung K-L, Kim S-J, Boyd S (2006) Tractable approximate robust geometric programming. Manuscript. Available from www.stanford,edu/\(\sim\)boyd/rgp.html
[88] Hu I, Wei C (1989) Irreversible adaptive allocation rules. Ann Stat 17(2):801–823 · Zbl 0689.62061 · doi:10.1214/aos/1176347144
[89] Ismail Y, Friedman E, Neves J (2000) Equivalent Elmore delay for RLC trees. IEEE Trans Comput Aided Des Integr Circuits Syst 19(7):83–97 · Zbl 05448373 · doi:10.1109/43.822622
[90] Jabr R (2005) Applications of geometric programming to transformer design. IEEE Trans Magn 41(11):4261–4269 · doi:10.1109/TMAG.2005.856921
[91] Jha N (1990) A discrete data base multiple objective optimization of milling operation through geometric programming. ASME J Eng Ind 112(4):368–374 · doi:10.1115/1.2899601
[92] Jiang I, Chang Y, Jou J (2000) Crosstalk-driven interconnect optimization by simultaneous gate and wire sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 19(9):999–1010 · Zbl 05448424 · doi:10.1109/43.863640
[93] Joshi S, Boyd S, Dutton R (2005) Optimal doping profiles via geometric programming. IEEE Trans Electron Devices 52(12):2660–2675 · doi:10.1109/TED.2005.859649
[94] Julian D, Chiang M, O’Neill D, Boyd S (2002) QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. In: Proceedings of the 21st IEEE INFOCOM, pp 477–486, 2002
[95] Jung H, Klein C (2001) Optimal inventory policies under decreasing cost functions via geometric programming. Eur J Oper Res 132(3):628–642 · Zbl 1024.90004 · doi:10.1016/S0377-2217(00)00168-5
[96] Kandukuri S, Boyd S (2002) Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans Wirel Commun 1(1):46–55 · doi:10.1109/7693.975444
[97] Karlof J, Chang Y (1997) Optimal permutation codes for the Gaussian channel. IEEE Trans Inform Theory 43(1):356–358 · Zbl 0871.94016 · doi:10.1109/18.567763
[98] Kasamsetty K, Ketkar M, Sapatnekar S (2000) A new class of convex functions for delay modeling and its application to the transistor sizing problem. IEEE Trans Comput Aided Des Integr Circuits Syst 19(7):779–788 · Zbl 05448433 · doi:10.1109/43.851993
[99] Kay R, Pileggi L (1998) EWA: Efficient wiring-sizing algorithm for signal nets and clock nets. IEEE Trans Comput Aided Des Integr Circuits Syst 17(1):40–49 · Zbl 05448449 · doi:10.1109/43.673631
[100] Kiely T, Gielen G (2004) Performance modeling of analog integrated circuits using least-squares support vector machines. In: Proceedings of the 2004 design, automation and test in Europe conference and exhibition (DATE), pp 16–20, 2004
[101] Kim J, Lee J, Vandenberghe L, Yang K (2004) Techniques for improving the accuracy of geometric-programming based analog circuit design optimization. In: Proceedings of the 2004 IEEE/ACM international conference on computer-aided design (ICCAD), pp 863–870, 2004
[102] Kim S-J, Boyd S, Yun S, Patil D, Horowitz M (2007) A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing (to appear in Optim Eng). Available from www.stanford.edu/\(\sim\)boyd/heur_san_opt.html · Zbl 1176.90083
[103] Klafszky E, Mayer J, Terlaky T (1992) A geometric programming approach to the channel capacity problem. Eng Optim 19:115–130 · doi:10.1080/03052159208941224
[104] Kortanek K, Xu X, Ye Y (1996) An infeasible interior-point algorithm for solving primal and dual geometric programs. Math Program 76(1):155–181 · Zbl 0881.90106
[105] Krishnamurthy R, Carley L (1997) Exploring the design space of mixed swing quadrail for low-power digital circuits. IEEE Trans Very Large Scale Integr Syst 5(4):389–400 · doi:10.1109/92.645065
[106] Kyparsis J (1988) Sensitivity analysis in posynomial geometric programming. J Optim Theory Appl 57(1):85–121 · Zbl 0619.90071 · doi:10.1007/BF00939331
[107] Kyparsis J (1990) Sensitivity analysis in geometric programming: theory and computations. Ann Oper Res 27(1):39–64 · Zbl 0813.90113 · doi:10.1007/BF02055189
[108] Lawler E, Wood D (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719 · Zbl 0143.42501 · doi:10.1287/opre.14.4.699
[109] Lee J, Hatcher G, Vandenbergh L, Yang K (2003) Evaluation of fully-integrated switching regulators for CMOS process technologies. In: Proceedings of the 2003 international symposium on system-on-chip, pp 155–158, 2003
[110] Lee W, Kim D (1993) Optimal and heuristic decision strategies for integrated production and marketing planning. Decis Sci 24(6):1203–1213 · doi:10.1111/j.1540-5915.1993.tb00511.x
[111] Lee Y-M, Chen C, Wong D (2002) Optimal wire-sizing function under the Elmore delay model with bounded wire sizes. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1671–1677 · Zbl 1368.94190 · doi:10.1109/TCSI.2002.804598
[112] Li X, Gopalakrishnan P, Xu Y, Pileggi T (2004) Robust analog/RF circuit design with projection-based posynomial modeling. In: Proceedings of the IEEE/ACM international conference on computer aided design (ICCAD), pp 855–862, 2004
[113] Lin T, Pileggi L (2001) RC(L) interconnect sizing with second order considerations via posynomial programming. In: Proceedings of the 2001 ACM/SIGDA international symposium on physical design (ISPD), pp 16–21, 2001
[114] Löfberg J (2003) YALMIP. Yet another LMI parser. Version 2.4. Available from http://control.ee.ethz.ch/\(\sim\)joloef/yalmip.php
[115] Lou J, Chen W, Pedram M (1999) Concurrent logic restructuring and placement for timing closure. In: Proceedings of the 1999 IEEE/ACM international conference on computer-aided design (ICCAD), pp 31–35, 1999
[116] Luenberger D (1984) Linear and nonlinear programming, 2nd edn. Addison–Wesley, Reading · Zbl 0571.90051
[117] Magnani A, Boyd S (2006) Convex piecewise-linear fitting (submitted to Optim Eng). Available from www.stanford.edu/\(\sim\)boyd/cvx_pwl_fit.html
[118] Mandal P, Visvanathan V (2001) CMOS op-amp sizing using a geometric programming formulation. IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):22–38 · Zbl 05448974 · doi:10.1109/43.905672
[119] Maranas C, Floudas C (1997) Global optimization in generalized geometric programming. Comput Chem Eng 21(4):351–369 · doi:10.1016/S0098-1354(96)00282-7
[120] Marković D, Stojanović V, Nikolić B, Horowitz M, Brodersen R (2004) Methods for true energy-performance optimization. IEEE J Solid State Circuits 39(8):1282–1293 · doi:10.1109/JSSC.2004.831796
[121] Matson M, Glasser L (1986) Macromodeling and optimization of digital MOS VLSI circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 5(4):659–678 · Zbl 05448893 · doi:10.1109/TCAD.1986.1270236
[122] Mazumdar M, Jefferson T (1983) Maximum likelihood estimates for multinomial probabilities via geometric programming. Biometrika 70(1):257–261 · Zbl 0502.62035 · doi:10.1093/biomet/70.1.257
[123] Moh T-S, Chang T-S, Hakimi S (1996) Globally optimal floorplanning for a layout problem. IEEE Trans Circuits Syst I Fundam Theory Appl 43(29):713–720 · doi:10.1109/81.536741
[124] Mohan S, Hershenson M, Boyd S, Lee T (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid State Circuit 34(10):1419–1424 · doi:10.1109/4.792620
[125] Mohan S, Hershenson M, Boyd S, Lee T (2000) Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J Solid State Circuits 35(3):346–355 · doi:10.1109/4.826816
[126] Moore R (1991) Global optimization to prescribed accuracy. Comput Math Appl 21(6-7):25–39 · Zbl 0725.65062 · doi:10.1016/0898-1221(91)90158-Z
[127] MOSEK ApS (2002) The MOSEK optimization tools version 2.5. User’s manual and reference. Available from www.mosek.com
[128] Muqattash A, Krunz M, Shu T (2006) Performance enhancement of adaptive orthogonal modulation in wireless CDMA systems. IEEE J Sel Areas Commun 23(3):565–578 · doi:10.1109/JSAC.2005.862406
[129] Mutapcic A, Koh K, Kim S-J, Boyd S (2006) ggplab: a matlab toolbox for geometric programming. Available from www.stanford.edu/\(\sim\)boyd/ggplab/
[130] Nesterov Y, Nemirovsky A (1994) Interior-point polynomial methods in convex programming. Studies in applied mathematics, vol 13. SIAM, Philadelphia
[131] Nijhamp P (1972) Planning of industrial complexes by means of geometric programming. Rotterdam Univ. Press, Rotterdam
[132] Nocedal J, Wright S (1999) Numerical optimization, Springer series in operations research. Springer, New York · Zbl 0930.65067
[133] Palomar D, Cioffi J, Lagunas M (2003) Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process 51(9):2381–2401 · doi:10.1109/TSP.2003.815393
[134] Papalambros P, Wilde D (1988) Principles of optimal design. Cambridge University Press, Cambridge · Zbl 0654.90047
[135] Patil D, Yun Y, Kim S-J, Boyd S, Horowitz M (2005) A new method for robust design of digital circuits. In: Proceedings of the 6th international symposium on quality electronic design (ISQED), pp 676–681, 2005
[136] Pattanaik M, Banerjee S, Bahinipati B (2003) GP based transistor sizing for optimal design of nanoscale CMOS inverter. In: Proceedings of the 3rd IEEE conference on nanotechnology, pp 524–527, 2003
[137] Peterson E (1976) Geometric programming. SIAM Rev 18(1):1–51 · Zbl 0331.90057 · doi:10.1137/1018001
[138] Peterson E (2001) The origins of geometric programming. Ann Oper Res 105(1-4):15–19 · Zbl 1024.90002 · doi:10.1023/A:1013320729170
[139] Qin Z, Cheng C-K (2003) Realizable parasitic reduction using generalized Y-\(\Delta\) transformation. In: Proceedings of the 40th IEEE/ACM design automation conference (DAC), pp, 220–225, 2003
[140] Rajasekera J, Yamada M (2001) Estimating the firm value distribution function by entropy optimization and geometric programming. Ann Oper Res 105(1–4):61–75 · Zbl 1012.90066 · doi:10.1023/A:1013397314149
[141] Rajpogal J, Bricker D (1990) Posynomial geometric programming as a special case of semi-infinite linear programming. J Optim Theory Appl 66(3):444–475 · Zbl 0682.90078
[142] Rao S (1996) Engineering optimization: theory and practice, 3rd edn. Wiley–Interscience, New York
[143] Rijckaert M, Walraven E (1985) Geometric programming: estimation of Lagrange multipliers. Oper Res 33(1):85–93 · Zbl 0585.90077 · doi:10.1287/opre.33.1.85
[144] Rosenberg E (1989) Optimization module sizing in VLSI floorplanning by nonlinear programming. ZOR-Methods Model Oper Res 33(2):131–143 · Zbl 0667.90100 · doi:10.1007/BF01415168
[145] Rubenstein J, Penfield P, Horowitz M (1983) Signal delay in RC tree networks. IEEE Trans Comput Aided Des Integr Circuits Syst 2(3):202–211 · Zbl 05449565 · doi:10.1109/TCAD.1983.1270037
[146] Sakurai T (1988) Approximation of wiring delay in MOSFET LSI. IEEE J Solid State Circuits 18(4):418–426 · doi:10.1109/JSSC.1983.1051966
[147] Salomone H, Iribarren O (1993) Posynomial modeling of batch plants: a procedure to include process decision variables. Comput Chem Eng 16(3):173–184 · doi:10.1016/0098-1354(92)85004-R
[148] Salomone H, Montagna J, Iribarren O (1994) Dynamic simulations in the design of batch processes. Comput Chem Eng 18(3):191–204 · doi:10.1016/0098-1354(94)85008-9
[149] Sancheti P, Sapatnekar S (1996) Optimal design of macrocells for low power and high speed. IEEE Trans Comput Aided Des Integr Circuits Syst 15(9):1160–1166 · Zbl 05449483 · doi:10.1109/43.536722
[150] Sapatnekar S (1996) Wire sizing as a convex optimization problem: exploring the area-delay tradeoff. IEEE Trans Comput Aided Des Integr Circuits Syst 15(8):1001–1011 · Zbl 05449501 · doi:10.1109/43.511579
[151] Sapatnekar S (2004) Timing. Kluwer Academic, Dordrecht
[152] Sapatnekar S, Rao V, Vaidya P, Kang S (1993) An exact solution to the transistor sizing problem for CMOS circuits using convex optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 12(11):1621–1634 · Zbl 05449505 · doi:10.1109/43.248073
[153] Sathyamurthy H, Sapatnekar S, Fishburn J (1998) Speeding up pipelined circuits through a combination of gate sizing and clock skew optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 17(2):173–182 · Zbl 05449553 · doi:10.1109/43.681267
[154] Satish N, Ravindran K, Moskewicz M, Chinnery D, Keutzer K (2005) Evaluating the effectiveness of statistical gate sizing for power optimization. Technical report ERL memorandum M05/28, University of California at Berkeley, August 2005
[155] Scott C, Jefferson T, Jorjani S (2004) Duals for classical inventory models via generalized geometric programming. J Appl Math Decis Sci 8(3):191–200 · Zbl 1092.90005
[156] Sherali H (1998) Global optimization of nonconvex polynomial programming problems having rational exponents. J Global Optim 12(3):267–283 · Zbl 0905.90146 · doi:10.1023/A:1008249414776
[157] Sherwani N (1999) Algorithms for VLSI design automation, 3rd edn. Kluwer Academic, Dordrecht · Zbl 0926.68059
[158] Shyu J, Sangiovanni-Vincetelli A, Fishburn J, Dunlop A (1988) Optimization-based transistor sizing. IIEEE J Solid State Circuits 23(2):400–409 · doi:10.1109/4.1000
[159] Singh J, Nookala V, Luo Z-Q, Sapatnekar S (2005) Robust gate sizing by geometric programming. In: Proceedings of the 42nd IEEE/ACM design automation conference (DAC), pp 315–320, 2005
[160] Smeers Y, Tyteca D (1984) A geometric programming model for the optimal design of wastewater treatment plants. Oper Res 32(2):314–342 · Zbl 0537.90096 · doi:10.1287/opre.32.2.314
[161] Sonmez A, Baykasoglu A, Dereli T, Flz I (1999) Dynamic optimization of multipass milling operations via geometric programming. Int J Mach Tools Manuf 39(2):297–320 · doi:10.1016/S0890-6955(98)00027-3
[162] Stark R, Machida M (1993) Chance design costs-A distributional limit. In: Proceedings of the 2nd international symposium on uncertainty modeling and analysis, pp 269–270, 1993
[163] Sutherland I, Sproull B, Harris D (1999) Logical effort: designing fast CMOS circuits. Morgan Kaufmann, San Francisco
[164] Swahn B, Hassoun S (2006) Gate sizing: FinFETs vs 32nm bulk MOSFETs. In: Proceedings of the 43rd IEEE/ACM design automation conference (DAC), pp 528–531, 2006
[165] Trivedi K, Sigmon T (1981) Optimal design of linear storage hierarchies. J ACM 28(2):270–288 · Zbl 0464.68026 · doi:10.1145/322248.322253
[166] Tsai J-F, Li H-L, Hu N-Z (2002) Global optimization for signomial discrete programming problems in engineering design. Eng Optim 34(6):613–622 · doi:10.1080/03052150215719
[167] Vanderhaegen J, Brodersen R (2004) Automated design of operational transconductance amplifiers using reversed geometric programming. In: Proceedings of the 41st IEEE/ACM design automation conference (DAC), pp 133–138, 2004
[168] Vanderplaats G (1984) Numerical optimization techniques for engineering design. McGraw–Hill, New York · Zbl 0613.90062
[169] Vardi Y (1985) Empirical distributions in selection bias models. Ann Stat 13(1):178–203 · Zbl 0578.62047 · doi:10.1214/aos/1176346585
[170] Wall T, Greening D, Woolsey R (1986) Solving complex chemical equilibria using a geometric-programming based technique. Oper Res 34(3):345–355 · Zbl 0602.90139 · doi:10.1287/opre.34.3.345
[171] Wilde D (1978) Globally optimal design. Wiley, New York
[172] Wilde D, Beightler C (1967) Foundations of optimization. Prentice Hall, Englewood Cliffs · Zbl 0189.19702
[173] Wong D (1981) Maximum likelihood, entropy maximization, and the geometric programming approaches to the calibration of trip distribution models. Transp Res Part B Methodol 15(5):329–343 · doi:10.1016/0191-2615(81)90018-7
[174] Xu Y, Pileggi L, Boyd S (2004) ORACLE: optimization with recourse of analog circuits including layout extraction. In: Proceedings of the 41st IEEE/ACM design automation conference (DAC), pp 151–154, 2004
[175] Yang H-H, Bricker D (1997) Investigation of path-following algorithms for signomial geometric programming problems. Eur J Oper Res 103(1):230–241 · Zbl 0922.90117 · doi:10.1016/S0377-2217(96)00265-2
[176] Yazarel H, Pappas G (2004) Geometric programming relaxations for linear system reachability. In: Proceedings of the 2004 American control conference (ACC), pp 553–559, 2004
[177] Young F, Chu C, Luk W, Wong Y (2001) Handling soft modules in general nonslicing floorplan using Lagrangian relaxation. IEEE Trans Comput Aided Des Integr Circuits Syst 20(5):687–629 · Zbl 05450195 · doi:10.1109/43.920707
[178] Yun K, Xi C (1997) Second-order method of generalized geometric programming for spatial frame optimization. Comput Methods Appl Mech Eng 141(1-2):117–123 · Zbl 0891.73077 · doi:10.1016/S0045-7825(96)01097-3
[179] Zener C (1971) Eng design by geometric programming. Wiley, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.