×

Fractional order differential equations on an unbounded domain. (English) Zbl 1179.26015

Summary: We are concerned with the existence of bounded solutions of a boundary value problem on an unbounded domain for differential equations involving the Caputo fractional derivative. Our results are based on a fixed point theorem of Schauder combined with the diagonalization method.

MSC:

26A33 Fractional derivatives and integrals
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
34B15 Nonlinear boundary value problems for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Glockle, W.G.; Nonnenmacher, T.F., A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68, 46-53, (1995)
[2] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Singapore · Zbl 0998.26002
[3] Metzler, F.; Schick, W.; Kilian, H.G.; Nonnenmacher, T.F., Relaxation in filled polymers: A fractional calculus approach, J. chem. phys., 103, 7180-7186, (1995)
[4] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[5] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. calc. appl. anal., 5, 367-386, (2002) · Zbl 1042.26003
[6] Kilbas, A.A.; Srivastava, Hari M.; Trujillo, Juan J., ()
[7] Lakshmikantham, V.; Leela, S.; Vasundhara, J., Theory of fractional dynamic systems, (2009), Cambridge Academic Publishers Cambridge · Zbl 1188.37002
[8] R.P Agarwal, M. Benchohra, S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. (in press) · Zbl 1198.26004
[9] Ahmad, B.; Nieto, J.J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl., 2009, (2009), Article ID 708576, 11 pages · Zbl 1167.45003
[10] M. Belmekki, J.J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl. (in press) Art. ID 324561 · Zbl 1324.34063
[11] Benchohra, M.; Graef, J.R.; Hamani, S., Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions, Appl. anal., 87, 7, 851-863, (2008) · Zbl 1198.26008
[12] Benchohra, M.; Hamani, S., Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. methods nonlinear anal., 32, 1, 115-130, (2008) · Zbl 1180.26002
[13] Benchohra, M.; Hamani, S.; Ntouyas, S.K., Boundary value problems for differential equations with fractional order, Surv. math. appl., 3, 1-12, (2008) · Zbl 1157.26301
[14] Chang, Y.-K.; Nieto, J.J., Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. model., 49, 605-609, (2009) · Zbl 1165.34313
[15] Ouahab, A., Some results for fractional boundary value problem of differential inclusions, Nonlinear anal., 69, 11, 3877-3896, (2008) · Zbl 1169.34006
[16] Belarbi, A.; Benchohra, M.; Ouahab, A., Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. anal., 85, 1459-1470, (2006) · Zbl 1175.34080
[17] Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, J. math. anal. appl., 338, 2, 1340-1350, (2008) · Zbl 1209.34096
[18] Belarbi, A.; Benchohra, M.; Hamani, S.; Ntouyas, S.K., Perturbed functional differential equations with fractional order, Commun. appl. anal., 11, 3-4, 429-440, (2007) · Zbl 1148.34042
[19] Heymans, N.; Podlubny, I., Physical interpretation of initial conditions for fractional differential equations with riemann – liouville fractional derivatives, Rheol. acta, 45, 5, 765-772, (2006)
[20] R.P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (in press) · Zbl 1208.26012
[21] Granas, A.; Dugundji, J., Fixed point theory, (2003), Springer Verlag · Zbl 1025.47002
[22] Agarwal, R.P; O’ Regan, D., Infinite interval problems for differential, difference and integral equations, (2001), Kluwer Academic Publishers Dordrecht
[23] Agarwal, R.P; O’ Regan, D., Boundary value problems of nonsingular type on the semi-infinite interval, Tohoku. math. J., 51, 391-397, (1999) · Zbl 0942.34026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.