zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the impulsive delay hematopoiesis model with periodic coefficients. (English) Zbl 1179.34092
Summary: We consider the nonlinear impulsive delay hematopoiesis model $$p'(t)=\frac{\beta(t)}{1+p^n(t-m\omega)}-\gamma(t)p(t),\quad t\ne t_k,$$ $$p(t^+_k)=(1-b_k)p(t_k),\quad k\in\Bbb N=\{1,2,\dots\},$$ where $n,m\in\Bbb N$, $\beta(t)$, $\gamma(t)$ and $\prod_{0<t_k<t}(1+b_k)$ are positive periodic functions of period $\omega > 0$. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution $\overline p(t)$. We establish some sufficient conditions for the global attractivity of $\overline p(t)$. These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution $\overline p(t)$. These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.

MSC:
34K60Qualitative investigation and simulation of models
34K11Oscillation theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations
34K45Functional-differential equations with impulses
92C50Medical applications of mathematical biology
WorldCat.org
Full Text: DOI
References:
[1] G. Ballinger and X. Liu, Existence and uniqueness results for impulsive delay differential equations , Dynamic Continuous Discrete Impulse Systems 5 (1999), 579-591. · Zbl 0955.34068
[2] L. Berezansky and E. Braverman, On existence and attractivity of periodic solutions for the hematopoiesis equation , Dynamic Continuous Discrete Impulsive Systems,
[3] J. Chao, On the oscillation of linear differential equations with deviating arguments , Math. Practice Theory 1 (1991), 32-40.
[4] L.H. Erbe and B.G. Zhang, Oscillation for first order linear differential equations with deviating arguments , Differential Integral Equations 1 (1988), 305-314. · Zbl 0723.34055
[5] R.E. Gaines, Existence of periodic solutions to second-order nonlinear ordinary differential equations , J. Differential Equations 16 (1074), 186-199. · Zbl 0281.34033 · doi:10.1016/0022-0396(74)90033-3
[6] R.E. Gaines and J.L. Mawhin, Coincidence degree and nonlinear differential equations , Springer, Berlin, 1977. · Zbl 0339.47031
[7] K. Gopalsamy, M.R.S. Kulenovic and G. Ladas, Oscillation and global attractivity in models of hematopoiesis , J. Dynamical Differential Equations 2 (1990), 117-132. · Zbl 0694.34057 · doi:10.1007/BF01057415
[8] K. Gopalsamy and Pei-Xuan Weng, Global attractivity and level crossing in a model of hematopoiesis , Bull. Inst. Math. Acad. Sinica 22 (1994), 341-360. · Zbl 0829.34067
[9] K. Gopalsamy and B.G. Zhang, On the delay differential equations with impulses , J. Math. Anal. Appl. 139 (1989), 110-122. · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[10] I. Gyori and G.S. Ladde, Oscillation theory of differential equations with applications , Oxford University Press, New York, 1991. · Zbl 0780.34048
[11] J.R. Haddock and Y. Kuang, Asymptotic theory for a class of nonatonomous delay differential equations , J. Math. Anal. Appl. 168 (1992), 147-162. · Zbl 0764.45005 · doi:10.1016/0022-247X(92)90195-J
[12] T. Hara, T. Yoneyama, and R. Miyazaki, Some refinements of Razumikhin’s method and their applications , Funk. Ekvac. 35 (1992), 279-305. · Zbl 0770.34051
[13] G. Karakostas, Ch.G. philos and Y.G. Sficas, Stable steady sate of some population models , J. Dynamical Differential Equations 4 (1992), 161-190. · Zbl 0744.34071 · doi:10.1007/BF01048159
[14] W. Krawcewicz and J. Wu, Theory of degrees with applications to bifurcations and differential equations , John Wily, New York, 1997. · Zbl 0882.58001
[15] G.S. Ladde, V. Lakshmikantham and B.Z. Zhang, Oscillation theory of differential equations with deviating arguments , Marcel Dekker, New York, 1987. · Zbl 0622.34071
[16] B. Li, Oscillation of delay differential equations with variable coefficients , J. Math. Anal. Appl. 192 (1995), 217-234. · Zbl 0836.34033
[17] X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations , Computers Math. Appl. 41 (2001), 903-915. · Zbl 0989.34061 · doi:10.1016/S0898-1221(00)00328-X
[18] X. Liu and G. Ballinger, Boundedness for impulsive delay differential equations and applications to population growth models , Nonlinear Anal. 53 (2003), 1041-1062. · Zbl 1037.34061 · doi:10.1016/S0362-546X(03)00041-5
[19] --------, Existence and continuability of solutions for differential equations with delays and state-dependent impulses , Nonlinear Anal. TMA 51 (2002), 633-647. · Zbl 1015.34069 · doi:10.1016/S0362-546X(01)00847-1
[20] E. Liz, C. Martinez and S. Trofimchuk, Attractivity proporties of infinite delay Macky-Glass type equations , Differential Integral Equations 15 (2002), 875-896. · Zbl 1032.34073
[21] J. Luo, Oscillation of nonlinear delay differential equations with impulses , J. Math. Anal. Appl. 250 (2000), 290-298. · Zbl 0971.34055 · doi:10.1006/jmaa.2000.7099
[22] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control system , Science 197 (1977), 287-289.
[23] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces , J. Differential Equations 12 (1972), 610-636. · Zbl 0244.47049 · doi:10.1016/0022-0396(72)90028-9
[24] A.J. Nicholson, The balance of animal population , J. Animal Ecology 2 (1993), 132-178.
[25] S.H. Saker, Oscillation and global attractivity in hematopoises model with time delay , Appl. Math. Comput. 136 (2003), 241-250. · Zbl 1026.34082 · doi:10.1016/S0096-3003(02)00035-8
[26] J.H. Shen, Global existence and uniqueness , in Oscillation and nonoscillation of impulsive delay differential equations , Acta Math. Sinica 40 (1997), 53-59 (in Chinese). · Zbl 0881.34074
[27] J. Shen and X. Tang, New oscillation criteria for linear delay differential equations , Comput. Math. Appl. 36 (1998), 53-61. · Zbl 0961.34056 · doi:10.1016/S0898-1221(98)00161-8
[28] S. Tang and L. Chen, Global attractivity in a ”food-limited” population model with impulsive effect , J. Math. Anal. Appl. 292 (2004), 211-221. · Zbl 1062.34055 · doi:10.1016/j.jmaa.2003.11.061
[29] R.R. Vance and E.A. Coddington, A nonautonomous model of population growth , J. Math. Biol. 27 (1989), 491-506. · Zbl 0716.92016 · doi:10.1007/BF00288430
[30] J.R. Yan, Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model , J. Math. Anal. Appl. 279 (2003), 111-120. · Zbl 1032.34077 · doi:10.1016/S0022-247X(02)00613-3
[31] J. Yan, A. Zhao and L. Peng, Oscillation of impulsive delay differential equations and applications to population dynamics , ANZIAM J. 46 (2005), 545-554. · Zbl 1078.34529 · doi:10.1017/S1446181100009664
[32] J. Yan, A. Zhao and W. Yan, Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect , J. Math. Anal. Appl. 309 (2005), 489-504. · Zbl 1086.34066 · doi:10.1016/j.jmaa.2004.09.038
[33] T. Yoneyama, On the $3/2$ stability theorem for one-dimensional delay-differential equations , J. Math. Anal. Appl. 125 (1987), 161-173. · Zbl 0655.34062 · doi:10.1016/0022-247X(87)90171-5
[34] --------, The $3/2$ stability theorem for one-dimensional delay-differential equations with unbounded delay , J. Math. Anal. Appl. 165 (1992), 133-143. · Zbl 0755.34074 · doi:10.1016/0022-247X(92)90071-K
[35] --------, On Yoneyama’s $3/2$ stability theorems for one-dimentional delay differential equations , J. Math. Anal. Appl. 247 (2000), 314-322. · Zbl 0977.34070 · doi:10.1006/jmaa.2000.6857
[36] J.S. Yu and Z.C. Wang, Some further results on oscillation of neutral differential equations , Bull. Austral. Math. Soc. 46 (1992), 149-157. · Zbl 0729.34051 · doi:10.1017/S0004972700011758
[37] J.S. Yu, Z.C. Wang, B.G. Zhang and X.Z. Qian, Oscillations of differential equations with deviating arguments , PanAmerican Math. J. 2 (1992), 59-72. · Zbl 0845.34082
[38] A. Zaghrout, A. Ammar and M.M.A. El-Sheikh, Oscillation and global attractivity in delay equation of population dynamics , Appl. Math. Comput. 77 (1996), 195-204. · Zbl 0848.92018 · doi:10.1016/S0096-3003(95)00213-8
[39] W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays , Math. Comp. Modelling 39 (2004), 479-493. · Zbl 1065.92066 · doi:10.1016/S0895-7177(04)90519-5