zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear oscillation of second-order dynamic equations on time scales. (English) Zbl 1179.34104
Summary: Interval oscillation criteria are established for a second-order nonlinear dynamic equation on time scales by utilizing a generalized Riccati technique and the Young inequality. The theory can be applied to second-order dynamic equations regardless of the choice of delta or nabla derivatives.

34N05Dynamic equations on time scales or measure chains
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
Full Text: DOI
[1] Hilger, S.: Analysis on measure chains--A unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[2] Bohner, M.; Peterson, A.: Dynamic equations on time scales, an introduction with applications, (2001) · Zbl 0978.39001
[3] , Advances in dynamic equations on time scales (2003) · Zbl 1025.34001
[4] Kaymakçalan, B.; Lakshmikantham, V.; Sivasundaram, S.: Dynamic systems on measure chains, (1996) · Zbl 0869.34039
[5] Wang, Q. R.: Interval criteria for oscillation of second-order nonlinear differential equations, J. comput. Appl. math. 205, 231-238 (2007) · Zbl 1142.34331 · doi:10.1016/j.cam.2006.04.052
[6] Güvenilir, A. F.; Zafer, A.: Second-order oscillation of forced functional differential equations with oscillatory potentials, Comput. math. Appl. 51, 1395-1404 (2006) · Zbl 1138.34335 · doi:10.1016/j.camwa.2006.02.002
[7] Nasr, A. H.: Necessary and sufficient conditions for the oscillation of forced nonlinear second order differential equations with delayed argument, J. math. Anal. appl. 212, 51-59 (1997) · Zbl 0884.34075 · doi:10.1006/jmaa.1997.5423
[8] Wong, J. S. W.: Oscillation criteria for a forced second order linear differential equation, J. math. Anal. appl. 231, 235-240 (1999) · Zbl 0922.34029 · doi:10.1006/jmaa.1998.6259
[9] Sun, Y. G.: A note on nasr’s and wong’s paper, J. math. Anal. appl. 286, 363-367 (2003) · Zbl 1042.34096
[10] Çakmak, D.; Tiryaki, A.: Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument, Computers math. Appl. 49, 1647-1653 (2005) · Zbl 1093.34552 · doi:10.1016/j.camwa.2005.02.005
[11] Li, X.; Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients, J. math. Anal. appl. 269, 462-488 (2002) · Zbl 1013.34067 · doi:10.1016/S0022-247X(02)00029-X
[12] Wong, J. S. W.: On kamenev-type oscillation theorems for second-order differential equations with damping, J. math. Anal. appl. 258, 244-257 (2001) · Zbl 0987.34024 · doi:10.1006/jmaa.2000.7376
[13] Agarwal, R. P.; Grace, S. R.; O’regan, D.: Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, (2002) · Zbl 1073.34002
[14] Bohner, M.; Tisdell, C.: Oscillation and nonoscillation of forced second order dynamic equations, Pacific J. Math. 230, No. 1, 59-71 (2007) · Zbl 1160.34029 · doi:10.2140/pjm.2007.230.59 · http://pjm.math.berkeley.edu/pjm/2007/230-1/p04.xhtml
[15] Erbe, L.; Peterson, A.; Saker, S. H.: Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynam. systems appl. 15, 65-78 (2006) · Zbl 1104.34026
[16] Saker, S. H.: Oscillation of second-order forced nonlinear dynamic equations on time scales, Electron J. Qual. theory differ. Equ. 23, 1-17 (2005) · Zbl 1097.34027 · emis:journals/EJQTDE/2005/200523.html
[17] Agarwal, R. P.; O’regan, D.; Saker, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. math. Anal. appl. 300, 203-217 (2004) · Zbl 1062.34068 · doi:10.1016/j.jmaa.2004.06.041
[18] Saker, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. comput. Appl. math. 187, 123-141 (2006) · Zbl 1097.39003 · doi:10.1016/j.cam.2005.03.039
[19] Agarwal, R. P.; O’regan, D.; Saker, S. H.: Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, J. appl. Math. comput. 20, No. 1-2, 133-147 (2006) · Zbl 1089.39001 · doi:10.1007/BF02831928
[20] Anderson, D. R.: Oscillation of second-order forced functional dynamic equations with oscillatory potentials, J. difference equ. Appl. 13, No. 5, 407-421 (2007) · Zbl 1123.34051 · doi:10.1080/10236190601116209
[21] D.R. Anderson, A. Zafer, Interval criteria for second-order super-half-linear functional dynamic equations with delay and advanced arguments, J. Difference Equ. Appl. (in press) · Zbl 1180.34070 · doi:10.1002/mana.200610801
[22] Došlý, O.; Marek, D.: Half-linear dynamic equations with mixed derivatives, Electron J. Differ. equ. 2005, 1-18 (2005) · Zbl 1092.39004 · emis:journals/EJDE/Volumes/2005/90/abstr.html