×

On approximate Euler differential equations. (English) Zbl 1179.35241

Summary: We solve the inhomogeneous Euler differential equations of the form \(x^2y''(x)+ \alpha xy'(x)+ \beta y(x)= \sum_{m=0}^\infty a_m x^m\) and apply this result to the approximation of analytic functions of a special type by the solutions of Euler differential equations.

MSC:

35Q35 PDEs in connection with fluid mechanics

References:

[1] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[2] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1960. · Zbl 0086.24101
[3] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[4] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002. · Zbl 1011.39019
[6] G. L. Forti, “Hyers-Ulam stability of functional equations in several variables,” Aequationes Mathematicae, vol. 50, no. 1-2, pp. 143-190, 1995. · Zbl 0836.39007 · doi:10.1007/BF01831117
[7] P. G\uavru\cta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Mass, USA, 1998. · Zbl 0907.39025
[9] D. H. Hyers and Th. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125-153, 1992. · Zbl 0806.47056 · doi:10.1007/BF01830975
[10] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23-130, 2000. · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[11] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001. · Zbl 0980.39024
[12] M. Obłoza, “Hyers stability of the linear differential equation,” Rocznik Naukowo-Dydaktyczny. Prace Matematyczne, no. 13, pp. 259-270, 1993. · Zbl 0964.34514
[13] M. Obłoza, “Connections between Hyers and Lyapunov stability of the ordinary differential equations,” Rocznik Naukowo-Dydaktyczny. Prace Matematyczne, no. 14, pp. 141-146, 1997. · Zbl 1159.34332
[14] C. Alsina and R. Ger, “On some inequalities and stability results related to the exponential function,” Journal of Inequalities and Applications, vol. 2, no. 4, pp. 373-380, 1998. · Zbl 0918.39009 · doi:10.1155/S102558349800023X
[15] S.-E. Takahasi, T. Miura, and S. Miyajima, “On the Hyers-Ulam stability of the Banach space-valued differential equation y\(^{\prime}\)=\lambda y,” Bulletin of the Korean Mathematical Society, vol. 39, no. 2, pp. 309-315, 2002. · Zbl 1011.34046 · doi:10.4134/BKMS.2002.39.2.309
[16] T. Miura, S.-M. Jung, and S.-E. Takahasi, “Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations y\(^{\prime}\)=\lambda y,” Journal of the Korean Mathematical Society, vol. 41, no. 6, pp. 995-1005, 2004. · Zbl 1069.34079 · doi:10.4134/JKMS.2004.41.6.995
[17] S.-M. Jung, “Legendre’s differential equation and its Hyers-Ulam stability,” Abstract and Applied Analysis, vol. 2007, Article ID 56419, 14 pages, 2007. · Zbl 1153.34306 · doi:10.1155/2007/56419
[18] S.-M. Jung, “Approximation of analytic functions by Hermite functions,” Bulletin des Sciences Mathematiques. In press. · Zbl 1186.41016 · doi:10.1016/j.bulsci.2007.11.001
[19] S.-M. Jung, “Approximation of analytic functions by airy functions,” Integral Transforms and Special Functions, vol. 19, no. 12, pp. 885-891, 2008. · Zbl 1155.34002 · doi:10.1080/10652460802321287
[20] S.-M. Jung, “An approximation property of exponential functions,” Acta Mathematica Hungarica, vol. 124, no. 1-2, pp. 155-163, 2009. · Zbl 1224.41061 · doi:10.1007/s10474-009-8167-1
[21] E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, New York, NY, USA, 4th edition, 1979. · Zbl 0517.00001
[22] W. R. Wade, An Introduction to Analysis, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2000. · Zbl 0951.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.