Hu, Guoen; Yang, Dachun; Yang, Dongyong \(h^1\), bmo, blo and Littlewood-Paley \(g\)-functions with non-doubling measures. (English) Zbl 1179.42018 Rev. Mat. Iberoam. 25, No. 2, 595-667 (2009). Let \(\mu\) be a non-doubling measure on \(\mathbb{R}^d\) which satisfies the growth condition that there exist constants \(C_{0} > 0\) and \(n \in (0, d]\) such that for all \(x \in \mathbb{R}^d\) and \(r> 0\), \[ \mu(B(x, r)) \leq C_{0}r^n, \] where \(B(x, r)\) is the open ball centered at \(x\) and having radius \(r\).In this paper the authors introduce a local atomic Hardy space \(h_{atb}^{1, \infty}(\mu)\), a local BMO-type space \(rbmo(\mu)\) and a local BLO-type space \(rblo(\mu)\), and establish characterizations for these spaces. In particular, the authors prove that the space \(rbmo(\mu)\) satisfies a John-Nirenberg inequality and its predual is \(h_{atb}^{1, \infty}(\mu)\).The authors also improve the known characterization theorems of \(RBLO(\mu)\) in terms of the natural maximal function by removing the assumption on the regularity condition, and obtain a characterization of \(rblo(\mu)\) by a local maximal operator.Moreover, the relations of these local spaces with the correspnding spaces: the Hardy space \(H^1(\mu)\), the BMO-type space \(RBMO(\mu)\) and the BLO-type space \(RBLO(\mu)\), are presented.As applications, the authors prove that the inhomogeneous Littlewood-Paley \(g\)-function \(g(f)\) is bounded from \(h_{atb}^{1, \infty}(\mu)\) to \(L^1(\mu)\) , and that \([g(f)]^2\) is bounded from \(rbmo(\mu)\) to \(rblo(\mu)\). As a collorary, the authors obtain the boundedness of the Littlewoo-Paley \(g\)-function from \(rbmo(\mu)\) to \(rblo(\mu)\). Reviewer: Koichi Saka (Akita) Cited in 1 ReviewCited in 14 Documents MSC: 42B35 Function spaces arising in harmonic analysis 42B25 Maximal functions, Littlewood-Paley theory 42B30 \(H^p\)-spaces Keywords:non-doubling measure; maximal function; John-Nirenberg inequality; Littlewood-Paley \(g\)-function; Hardy space; BMO × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] Bennett, C.: Another characterization of BLO. Proc. Amer. Math. Soc. 85 (1982), 552-556. JSTOR: · Zbl 0512.42022 · doi:10.2307/2044064 [2] Bennett, C., DeVore, R.A. and Sharpley, R.: Weak-\(L^\infty\) and BMO. Ann. of Math. (2) 113 (1981), 601-611. JSTOR: · Zbl 0465.42015 · doi:10.2307/2006999 [3] Chen, W., Meng, Y. and Yang, D.: Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc. Amer. Math. Soc. 133 (2005), 2671-2680 (electronic). · Zbl 1113.42008 · doi:10.1090/S0002-9939-05-07781-6 [4] Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46 (1979), 27-42. · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9 [5] García-Cuerva, J. and Rubio de Francia, J.L.: Weighted norm inequalities and related topics . North-Holland Mathematics Studies 116 . North-Holland Publishing Co., Amsterdam, 1985. · Zbl 0578.46046 [6] Hu, G., Meng, Y. and Yang, D.: New atomic characterization of \(H^ 1\) space with non-doubling measures and its applications. Math. Proc. Cambridge Philos. Soc. 138 (2005), 151-171. · Zbl 1063.42012 · doi:10.1017/S030500410400800X [7] Jiang, Y.: Spaces of type BLO for non-doubling measures. Proc. Amer. Math. Soc. 133 (2005), 2101-2107 (electronic). · Zbl 1059.42009 · doi:10.1090/S0002-9939-05-07795-6 [8] Journé, J.-L.: Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón . Lecture Notes in Math. 994 . Springer-Verlag, Berlin, 1983. · Zbl 0508.42021 [9] Leckband, M.: A note on exponential integrability and pointwise estimates of Littlewood-Paley functions. Proc. Amer. Math. Soc. 109 (1990), 185-194. JSTOR: · Zbl 0705.42012 · doi:10.2307/2048378 [10] Mateu, J., Mattila, P., Nicolau, A. and Orobitg, J.: BMO for nondoubling measures. Duke Math. J. 102 (2000), 533-565. · Zbl 0964.42009 · doi:10.1215/S0012-7094-00-10238-4 [11] Nazarov, F., Treil, S. and Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices 1997 , no 15, 703-726. · Zbl 0889.42013 · doi:10.1155/S1073792897000469 [12] Nazarov, F., Treil, S. and Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices 1998 , no. 9, 463-487. · Zbl 0918.42009 · doi:10.1155/S1073792898000312 [13] Nazarov, F., Treil, S. and Volberg, A.: Accretive system \(Tb\)-theorems on nonhomogeneous spaces. Duke Math. J. 113 (2002), 259-312. · Zbl 1055.47027 · doi:10.1215/S0012-7094-02-11323-4 [14] Nazarov, F., Treil, S. and Volberg, A.: The \(Tb\)-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151-239. · Zbl 1065.42014 · doi:10.1007/BF02392690 [15] Ou, W.: The natural maximal operator on BMO. Proc. Amer. Math. Soc. 129 (2001), 2919-2921 (electronic). JSTOR: · Zbl 0982.42011 · doi:10.1090/S0002-9939-01-05896-8 [16] Tolsa, X.: BMO, \(H^1\), and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149. · Zbl 0974.42014 · doi:10.1007/s002080000144 [17] Tolsa, X.: Littlewood-Paley theory and the \(T(1)\) theorem with non-doubling measures. Adv. Math. 164 (2001), 57-116. · Zbl 1015.42010 · doi:10.1006/aima.2001.2011 [18] Tolsa, X.: The space \(H^1\) for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc. 355 (2003), 315-348. JSTOR: · Zbl 1021.42010 · doi:10.1090/S0002-9947-02-03131-8 [19] Tolsa, X.: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105-149. · Zbl 1060.30031 · doi:10.1007/BF02393237 [20] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Amer. J. Math. 126 (2004), 523-567. · Zbl 1060.30032 · doi:10.1353/ajm.2004.0021 [21] Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. In Seminar of Mathematical Analysis , 239-271. Colecc. Abierta 71 . Univ. Sevilla Secr. Publ., Seville, 2004. · Zbl 1079.42007 [22] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. of Math. (2) 162 (2005), 1243-1304. · Zbl 1097.30020 · doi:10.4007/annals.2005.162.1243 [23] Tolsa, X.: Painlevé’s problem and analytic capacity. Collect. Math. 2006 , Vol. Extra, 89-125. · Zbl 1105.30015 [24] Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory. Publ. Mat. 2002 , Vol. Extra, 275-292. · Zbl 1025.42008 · doi:10.5565/PUBLMAT_Esco02_12 [25] Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces . CBMS Regional Conference Series in Mathematics 100 . Amer. Math. Soc., Providence, RI, 2003. · Zbl 1053.42022 [26] Yang, D.: Local Hardy and BMO spaces on non-homogeneous spaces. J. Aust. Math. Soc. 79 (2005), 149-182. · Zbl 1098.42020 · doi:10.1017/S1446788700010430 [27] Yang, Da. and Yang, Do.: Endpoint estimates for homogeneous Littlewood-Paley \(g\)-functions with non-doubling measures. J. Funct. Spaces Appl. (to appear). · Zbl 1173.42315 · doi:10.1155/2009/284849 [28] Yang, Da. and Yang, Do.: Uniform boundedness for approximations of the identity with nondoubling measures. J. Inequal. Appl. 2007 , Art. ID 19574, 25 pp. · Zbl 1190.42003 · doi:10.1155/2007/19574 [29] Yosida, K.: Functional analysis . Springer-Verlag, 1999. · Zbl 0152.32102 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.