×

zbMATH — the first resource for mathematics

Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. (English) Zbl 1179.49007
Summary: We generalize the concepts of well-posedness to equilibrium problems and to optimization problems with equilibrium constraints. We establish some metric characterizations of well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. We prove that under suitable conditions, the well-posedness is equivalent to the existence and uniqueness of solutions. The corresponding concepts of well-posedness in the generalized sense are also introduced and investigated for equilibrium problems and for optimization problems with equilibrium constraints.

MSC:
49J40 Variational inequalities
49K40 Sensitivity, stability, well-posedness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tykhonov, A.N., On the stability of the functional optimization problem, USSR J. comput. math. math. phys., 6, 631-634, (1966)
[2] Bednarczuk, E.; Penot, J.P., Metrically well-set minimization problems, Appl. math. optim., 26, 3, 273-285, (1992) · Zbl 0762.90073
[3] Dontchev, A.L.; Zolezzi, T., ()
[4] Huang, X.X., Extended and strongly extended well-posedness of set-valued optimization problems, Math. methods oper. res., 53, 101-116, (2001) · Zbl 1018.49019
[5] Zolezzi, T., Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear anal. TMA, 25, 437-453, (1995) · Zbl 0841.49005
[6] Zolezzi, T., Extended well-posedness of optimization problems, J. optim. theory appl., 91, 257-266, (1996) · Zbl 0873.90094
[7] Lucchetti, R.; Patrone, F., A characterization of tykhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. funct. anal. optim., 3, 4, 461-476, (1981) · Zbl 0479.49025
[8] Lignola, M.B.; Morgan, J., Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution, J. global optim., 16, 1, 57-67, (2000) · Zbl 0960.90079
[9] Lignola, M.B., Well-posedness and \(L\)-well-posedness for quasivariational inequalities, J. optim. theory appl., 128, 1, 119-138, (2006) · Zbl 1093.49005
[10] Y.P. Fang, R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions, Comput. Math. Appl. (2007), doi:10.1016/j.camwa.2006.09.009 · Zbl 1168.49307
[11] Lucchetti, R.; Patrone, F., Hadamard and tykhonov well-posedness of certain class of convex functions, J. math. anal. appl., 88, 204-215, (1982) · Zbl 0487.49013
[12] ()
[13] Margiocco, M.; Patrone, F.; Pusillo, L., A new approach to Tikhonov well-posedness for Nash equilibria, Optimization, 40, 4, 385-400, (1997) · Zbl 0881.90136
[14] Margiocco, M.; Patrone, F.; Pusillo, L., Metric characterizations of Tikhonov well-posedness in value, J. optim. theory appl., 100, 2, 377-387, (1999) · Zbl 0915.90271
[15] Margiocco, M.; Patrone, F.; Pusillo, L., On the Tikhonov well-posedness of concave games and Cournot oligopoly games, J. optim. theory appl., 112, 2, 361-379, (2002) · Zbl 1011.91004
[16] Morgan, J., Approximations and well-posedness in multicriteria games, Ann. oper. res., 137, 257-268, (2005) · Zbl 1138.91407
[17] Lemaire, B., Well-posedness, conditioning, and regularization of minimization, inclusion, and fixed-point problems, Pliska stud. math. bulgar., 12, 71-84, (1998) · Zbl 0947.65072
[18] Lemaire, B.; Ould Ahmed Salem, C.; Revalski, J.P., Well-posedness by perturbations of variational problems, J. optim. theory appl., 115, 2, 345-368, (2002) · Zbl 1047.90067
[19] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. student, 63, 123-145, (1994) · Zbl 0888.49007
[20] Bianchi, M.; Schaible, S., Generalized monotone bifunctions and equilibrium problems, J. optim. theory appl., 90, 1, 31-43, (1996) · Zbl 0903.49006
[21] Bianchi, M.; Pini, R., Sensitivity for parametric vector equilibria, Optimization, 55, 3, 221-230, (2006) · Zbl 1149.90156
[22] Morgan, J., Constrained well-posed two-level optimization problems, (), 307-325 · Zbl 0786.90112
[23] Dempe, S., Foundations of bilevel programming. nonconvex optimization and its applications, vol. 61, (2002), Kluwer Academic Publishers Dordrecht
[24] Luo, Z.Q.; Pang, J.S.; Ralph, D.; Wu, S.Q., Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints, Math. program. ser. A, 75, 1, 19-76, (1996) · Zbl 0870.90092
[25] Marcotte, P.; Zhu, D.L., Exact and inexact penalty methods for the generalized bilevel programming problem, Math. program. ser. A, 74, 2, 141-157, (1996) · Zbl 0855.90120
[26] Lignola, M.B.; Morgan, J., Existence for optimization problems with equilibrium constraints in reflexive Banach spaces, (), 15-35 · Zbl 1116.90403
[27] Lignola, M.B.; Morgan, J., \(\alpha\)-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints, J. global optim., 36, 3, 439-459, (2006) · Zbl 1105.49029
[28] Luo, Z.Q.; Pang, J.S.; Ralph, D., Mathematical programs with equilibrium constraints, (1997), Cambridge University Press Cambridge
[29] Lin, L.J.; Still, G., Mathematical programs with equilibrium constraints: the existence of feasible point, Optimization, 55, 3, 205-219, (2006) · Zbl 1124.90033
[30] Kuratowski, K., Topology, vols. 1-2, (1968), Academic Press New York, NY
[31] Klein, E.; Thompson, A.C., Theory of correspondences, (1984), John Wiley & Sons, Inc. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.