Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál Random walk local time approximated by a Brownian sheet combined with an independent Brownian motion. (English) Zbl 1179.60051 Ann. Inst. Henri Poincaré, Probab. Stat. 45, No. 2, 515-544 (2009). Let \(\xi(k,n)\), \(n\geq 1\), \(k\in \mathbb{Z}\), be a local time of a symmetric simple random walk on a line, or, in other words, a number of excursions away from \(k\) completed before \(n\). The paper is devoted to the strong approximations of centered local time \(\xi(k,n)-\xi(0,n)\) in terms of a Brownian sheet and an independent Wiener process, time changed by an independent Brownian local time. Some consequences such as week convergence and the laws of iterated logarithm (related to \(\xi(k,n)\)) are established. The paper also contains a survey and an extensive list of references concerning the results on such strong approximations of the local time. Reviewer: Victoria Knopova (Kiev) Cited in 2 Documents MSC: 60J55 Local time and additive functionals 60G50 Sums of independent random variables; random walks 60F15 Strong limit theorems 60G60 Random fields Keywords:local time; random walk; Brownian sheet; strong approximation × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions with Formulas , Graphs , and Mathematical Tables . Dover, New York, 1992. Reprint of the 1972 edition. [2] R. F. Bass and D. Khoshnevisan. Rates of convergence to Brownian local time. Stochastic Process. Appl. 47 (1993) 197-213. · Zbl 0783.60072 · doi:10.1016/0304-4149(93)90014-U [3] I. Berkes and W. Philipp. Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 (1979) 29-54. · Zbl 0392.60024 · doi:10.1214/aop/1176995146 [4] A. N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986) 231-250. · Zbl 0572.60078 · doi:10.1007/BF00699105 [5] A. N. Borodin. On the character of convergence to Brownian local time II. Probab. Theory Related Fields 72 (1986) 251-277. · Zbl 0572.60078 · doi:10.1007/BF00699105 [6] A. N. Borodin. Brownian local time. Russian Math. Surveys 44 (1989) 1-51. · Zbl 0705.60064 · doi:10.1070/RM1989v044n02ABEH002050 [7] A. N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae , 2nd edition. Birkhäuser, Basel, 2002. · Zbl 1012.60003 [8] K. Burdzy. Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes 67-87. E. Çinlar, K. L. Chung and M. J. Sharpe (Eds). Progr. Probab. 33 . Birkhäuser, Boston, 1993. · Zbl 0789.60060 [9] E. Csáki, M. Csörgő, A. Földes and P. Révész. How big are the increments of the local time of a Wiener process? Ann. Probab. 11 (1983) 593-608. · Zbl 0545.60074 · doi:10.1214/aop/1176993504 [10] E. Csáki, M. Csörgő, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989) 516-537. · Zbl 0674.60072 · doi:10.1214/aop/1176991413 [11] E. Csáki, M. Csörgő, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992) 679-706. · Zbl 0762.60024 · doi:10.1007/BF01058725 [12] E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983) 307-322. · Zbl 0516.60078 · doi:10.1007/BF00532485 [13] E. Csáki and A. Földes. On the local time process standardized by the local time at zero. Acta Math. Hungar. 52 (1988) 175-186. · Zbl 0652.60080 · doi:10.1007/BF01952489 [14] M. Csörgő and L. Horváth. On best possible approximations of local time. Statist. Probab. Lett. 8 (1989) 301-306. · Zbl 0691.60067 · doi:10.1016/0167-7152(89)90036-9 [15] M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics . Academic Press, New York, 1981. · Zbl 0539.60029 [16] M. Csörgő and P. Révész. On the stability of the local time of a symmetric random walk. Acta Sci. Math. ( Szeged ) 48 (1985) 85-96. · Zbl 0586.60060 [17] R. L. Dobrushin. Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk ( N. S. ) 10 (1955) 139-146 (in Russian). [18] M. Dwass. Branching processes in simple random walk. Proc. Amer. Math. Soc. 51 (1975) 270-274. JSTOR: · Zbl 0312.60032 · doi:10.2307/2040307 [19] N. Eisenbaum. A Gaussian sheet connected to symmetric Markov chains. Séminaire de Probabilités XXXVI 331-334. Lecture Notes in Math. 1801 . Springer, New York, 2003. · Zbl 1035.60077 [20] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58 (1963) 13-30. JSTOR: · Zbl 0127.10602 · doi:10.2307/2282952 [21] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes , 2nd edition. North-Holland, Amsterdam, 1989. · Zbl 0684.60040 [22] Y. Kasahara. Limit theorems of occupation times for Markov processes. Publ. Res. Inst. Math. Sci. 12 (1976/1977) 801-818. · Zbl 0367.60094 · doi:10.2977/prims/1195190379 [23] Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984) 521-538. · Zbl 0557.60021 [24] Y. Kasahara. A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains. J. Math. Soc. Japan 37 (1985) 197-205. · Zbl 0568.60039 · doi:10.2969/jmsj/03720197 [25] H. Kesten. Occupation times for Markov and semi-Markov chains. Trans. Amer. Math. Soc. 103 (1962) 82-112. · Zbl 0122.36602 · doi:10.2307/1993742 [26] F. B. Knight. Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 (1963) 56-86. JSTOR: · Zbl 0119.14604 · doi:10.2307/1993647 [27] F. B. Knight. Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143 (1969) 173-185. · Zbl 0187.41203 · doi:10.2307/1995241 [28] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent rv’s and the sample df. I. Z. Wahrsch. verw. Gebiete 32 (1975) 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093 [29] P. Lévy. Processus stochastiques et mouvement Brownian , Deuxième edition. Gauthier-Villars & Cie, Paris, 1965. [30] G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. In Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System . Duke Univ., Durham, 1977. · Zbl 0387.60067 [31] P. Révész. Local time and invariance. Lecture Notes in Math. 861 128-145. Springer, New York, 1981. · Zbl 0456.60029 [32] P. Révész. Random Walk in Random and Non-Random Environments , 2nd edition. World Scientific, Singapore, 2005. [33] L. C. G. Rogers. Brownian local times and branching processes. Séminaire de Probabilités XVIII 42-55. Lecture Notes in Math. 1059 . Springer, New York, 1984. · Zbl 0542.60080 [34] G. R. Shorack and J. A. Wellner. Empirical Processes With Applications to Statistics . Wiley, New York, 1986. · Zbl 1170.62365 [35] A. V. Skorokhod and N. P. Slobodenyuk. Asymptotic behavior of certain functionals of the Brownian motion. Ukrain. Mat. Z. 18 (1966) 60-71 (in Russian). [36] A. V. Skorokhod and N. P. Slobodenyuk. Limit Theorems for Random Walk . Naukova Dumka, Kiev, 1970 (in Russian). · Zbl 0202.47403 [37] F. Spitzer. Principles of Random Walk . Van Nostrand, Princeton, NJ, 1964. · Zbl 0119.34304 [38] B. Tóth. No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001) 484-503. · Zbl 1031.60036 · doi:10.1214/aop/1008956341 [39] M. Yor. Le drap Brownian comme limite en loi de temps locaux linéaires. Séminaire de Probabilités XVII , 1981/82 89-105. Lecture Notes in Math. 986 . Springer, New York, 1983. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.