zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A hybrid of the Newton-GMRES and electromagnetic meta-heuristic methods for solving systems of nonlinear equations. (English) Zbl 1179.65054
Summary: Solving systems of nonlinear equations is perhaps one of the most difficult problems in all numerical computation. Although numerous methods have been developed to attack this class of numerical problems, one of the simplest and oldest methods, Newton’s method is arguably the most commonly used. As is well known, the convergence and performance characteristics of Newton’s method can be highly sensitive to the initial guess of the solution supplied to the method. In this paper a hybrid scheme is proposed, in which the Electromagnetic meta-heuristic method (EM) is used to supply a good initial guess of the solution to the finite difference version of the Newton-GMRES method (NG) for solving a system of nonlinear equations. Numerical examples are given in order to compare the performance of the hybrid of the EM and NG methods. Empirical results show that the proposed method is an efficient approach for solving systems of nonlinear equations.

65H10Systems of nonlinear equations (numerical methods)
90C59Approximation methods and heuristics
Full Text: DOI
[1] Allgower, E.L., Georg, K. (eds.): Computational Solution of Nonlinear Systems of Equations. American Mathematical Society, Providence (1990) · Zbl 0688.00015
[2] Merlet, J.P.: The COPRIN examples. http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html (2006)
[3] Pinter, J.D.: Computational Global Optimization in Nonlinear Systems: An Interactive Tutorial. Lionhart, Atlanta (2001)
[4] Broyden, C.G., Luss, D.: A class of methods for solving nonlinear simultaneous equation. Math. Comput. 19, 577--593 (1965) · Zbl 0131.13905 · doi:10.1090/S0025-5718-1965-0198670-6
[5] Martínez, J.M.: Algorithms for Solving Nonlinear Systems of Equations, pp. 81--108. Continuous Optimization (1994) · Zbl 0828.90125
[6] Hribar, M.B.: Methods for large-scale nonlinear programming and nonlinear systems of equations. Ph.D. dissertation, EECS Department, Northwestern University (1997) · Zbl 0916.90179
[7] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[8] Rheinboldt, W.C.: Methods for Solving Systems of Nonlinear Equations, 2nd edn. SIAM, Philadelphia (1998) · Zbl 0906.65051
[9] Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400--408 (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[10] Brown, P.N.: A local convergence theory for combined inexact-Newton/finite-difference projection methods. SIAM J. Numer. Anal. 24(2), 407--434 (1987) · Zbl 0618.65037 · doi:10.1137/0724031
[11] Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 11(3), 450--481 (1990) · Zbl 0708.65049 · doi:10.1137/0911026
[12] Morini, B.: Convergence behaviour of inexact Newton methods. Math. Comp. 68, 1605--1613 (1999) · Zbl 0933.65050 · doi:10.1090/S0025-5718-99-01135-7
[13] Argyros, I.K.: Convergence rates for inexact Newton-like methods at singular points and applications. Appl. Math. Comput. 102, 185--201 (1999) · Zbl 0930.65062 · doi:10.1016/S0096-3003(98)10015-2
[14] Zecevic, A.I., Siljak, D.D.: A block-parallel Newton method via overlapping epsilon decompositions. SIAM J. Matrix Anal. Appl. 15(3), 824--844 (1994) · Zbl 0828.65048 · doi:10.1137/S0895479892229115
[15] Yang, G., Dutto, L.C., Fortin, M.: Inexact block Jacobi-Broyden methods for solving nonlinear systems of equations. SIAM J. Sci. Comput. 18(5), 1367--1392 (1997) · Zbl 0890.65044 · doi:10.1137/S1064827595285172
[16] Xu, J.J.: Convergence of partially asynchronous block Quasi-Newton methods for nonlinear systems of equations. J. Appl. Math. Comput. 103, 307--321 (1999) · Zbl 0937.65059 · doi:10.1016/S0377-0427(98)00268-4
[17] Saad, Y.: Krylov subspace methods for solving unsymmetric linear systems. Math. Comp. 37, 105--126 (1981) · Zbl 0474.65019 · doi:10.1090/S0025-5718-1981-0616364-6
[18] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856--869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[19] Heyouni, M.: Newton generalized Hessemberg method for solving nonlinear systems of equations. Numer. Agorithms 21, 225--246 (1999) · Zbl 0937.65058 · doi:10.1023/A:1019130001657
[20] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000) · Zbl 0958.65071
[21] Dennis, J.E., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996) · Zbl 0847.65038
[22] Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000) · Zbl 0930.65067
[23] Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263--282 (2003) · Zbl 1047.90045 · doi:10.1023/A:1022452626305
[24] Grosan, C., Abraham, A., Gelbukh, A.: Evolutionary Method for Nonlinear Systems of Equations. MICAI 2006: Advances in Artificial Intelligence, pp. 283--293. Springer, Berlin (2006)
[25] Effati, S., Nazemi, A.R.: A new method for solving a system of the nonlinear equations. Appl. Math. Comput. 168, 877--894 (2005) · Zbl 1081.65044 · doi:10.1016/j.amc.2004.09.029
[26] Luksan, L.: Inexact trust region method for large sparse systems of nonlinear equations. J. Optim. Theory Appl. 81(3), 569--590 (1994) · Zbl 0803.65071 · doi:10.1007/BF02193101
[27] Bogle, I.D.L., Perkins, J.D.: A new sparsity-preserving Quasi-Newton update for solving nonlinear equations. SIAM J. Sci. Statist. Comput. 11, 621--630 (1990) · Zbl 0749.65033 · doi:10.1137/0911036
[28] Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17--41 (1981) · Zbl 0454.65049 · doi:10.1145/355934.355936
[29] Toint, P.L.: Numerical solution of large sets of algebraic equations. Math. Comput. 46, 175--189 (1986) · Zbl 0614.65058 · doi:10.1090/S0025-5718-1986-0815839-9
[30] Gomez-Ruggiero, M.A., Martínez, J.M., Moretti, A.C.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 13, 459--483 (1992) · Zbl 0752.65039 · doi:10.1137/0913025
[31] Li, G.: Successive column correction algorithms for solving sparse nonlinear systems of equations. Math. Program. 43, 187--207 (1989) · Zbl 0675.65045 · doi:10.1007/BF01582289
[32] Friedlander, A., Gomes-Ruggiero, M.A., Kozakevich, D.N., Martinez, J.M., Santos, S.A.: Solving nonlinear systems of equations by means of Quasi-Newton methods with nonmonotone strategy. Optim. Methods Softw. 87, 25--51 (1997) · Zbl 0893.65032 · doi:10.1080/10556789708805664
[33] Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3--30 (1998) · Zbl 0917.65005 · doi:10.1145/272991.272995