zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new gradient method via quasi-Cauchy relation which guarantees descent. (English) Zbl 1179.65067
Authors’ abstract: We propose a new monotone algorithm for unconstrained optimization in the frame of {\it J. Barzilai} and {\it J. Borwein} (BB) method [IMA J. Numer. Anal. 8, 141--148 (1988; Zbl 0638.65055)] and analyze the convergence properties of this new descent method. Motivated by the fact that BB method does not guarantee descent in the objective function at each iteration, but performs better than the steepest descent method, we therefore attempt to find stepsize formula which enables us to approximate the Hessian based on the Quasi-Cauchy equation and possess monotone property in each iteration. Practical insights on the effectiveness of the proposed techniques are given by a numerical comparison with the BB method.

65K05Mathematical programming (numerical methods)
90C59Approximation methods and heuristics
Full Text: DOI
[1] Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method, Ann. inst. Statist. math., Tokyo 11, 1-17 (1959) · Zbl 0100.14002 · doi:10.1007/BF01831719
[2] Barzilai, J.; Borwein, J. M.: Two point step size gradient methods, IMA J. Numer. anal. 8, 141-148 (1988) · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[3] Raydan, M.: On the barzilai and Borwein choice of steplength for the gradient method, IMA J. Numer. anal. 13, 618-622 (1993) · Zbl 0778.65045 · doi:10.1093/imanum/13.3.321
[4] Dai, Y. H.; Liao, L. Z.: R-linear convergence of the barzilai and Borwein gradient method, IMA J. Numer. anal. 22, 1-10 (2002) · Zbl 1002.65069 · doi:10.1093/imanum/22.1.1
[5] Dai, Y. H.; Yuan, J. Y.; Yuan, Y.: Modified two-point stepsize gradient methods for unconstrained optimization, J. comput. Optim. appl. 22, 103-109 (2002) · Zbl 1008.90056 · doi:10.1023/A:1014838419611
[6] Dai, Y. H.; Yuan, Y.: Alternative minimization gradient method, IMA J. Numer. anal. 23, 373-393 (2003) · Zbl 1055.65073 · doi:10.1093/imanum/23.3.377
[7] R. Fletcher, On the Barzilai-Borwein method, Research Report NA/207, University of Dundee, UK, 2001 · Zbl 1118.90318
[8] Yuan, Y.: A new stepsize for the steepest descent method, J. comput. Math. 24, 149-156 (2006) · Zbl 1101.65067
[9] Dai, Y. H.; Fletcher, R.: On the asymptotic behaviour of some new gradient methods, Math. program. 103, 541-559 (2005) · Zbl 1099.90038 · doi:10.1007/s10107-004-0516-9
[10] Han, L.; Yu, G.; Guan, L.: Multivariate spectral gradient method for unconstrained optimization, Appl. math. Comput. 201, 621-630 (2008) · Zbl 1155.65046 · doi:10.1016/j.amc.2007.12.054
[11] Oren, S.; Spedicato, E.: Optimal conditioning of self-scaling variable metric algorithms, Math. program. 10, 70-90 (1976) · Zbl 0342.90045 · doi:10.1007/BF01580654
[12] Andrei, N.: An unconstrained optimization test functions collection, J. amo 10, 147-161 (2008) · Zbl 1161.90486 · http://www.ici.ro/camo/journal/v10n1.htm