×

Tomography of quantum states in small dimensions. (English) Zbl 1179.81042

Herman, Gabor T. (ed.) et al., Proceedings of the workshop on discrete tomography and its applictions, New York, NY, USA, June 13–15, 2005. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 20, 151-164 (2005).
Summary: We consider the problem of determining the state of a finite dimensional quantum system by a finite set of different measurements in an optimal way. The measurements can either be projective von Neumann measurements or generalized measurements (POVMs). While optimal solutions for projective measurements are only known for prime power dimensions, based on numerical solutions it is conjectured that solutions for POVMs exist in any dimension. We support this conjecture by constructing explicit algebraic solutions in small dimensions \(d\), in particular \(d = 12\).
For the entire collection see [Zbl 1109.65003].

MSC:

81P68 Quantum computation

Software:

Magma
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Appleby, D. M., SIC-POVMs and the Extended Clifford Group, Journal of Mathematical Physics, 46, 052107 (2005), Preprint available at · Zbl 1110.81023
[2] Bosma, W.; Cannon, J. J.; Playoust, C., The Magma Algebra System I: The User Language, Journal of Symbolic Computation, 24, 235-266 (1997) · Zbl 0898.68039
[3] Finkelstein, J., Pure-state informationally complete and “really” complete measurements, Physical Review A, 70, 052107 (2004), Preprint available at · Zbl 1227.81029
[4] Flammia, S. T.; Silberfarb, A.; Caves, C. M., Minimal Informationally Complete Measurements for Pure States (2004), Preprint available at
[5] Gibbons, K. S.; Hoffman, M. J.; Wootters, W. K., Discrete phase space based on finite fields, Physical Review A, 70, 062101 (2004), Preprint available at · Zbl 1227.81218
[6] Grassl, M., On SIC-POVMs and MUBs in Dimension 6Proceedings ERATO Conference on Quantum Information Science 2004 (EQIS 04)http://arXiv.org/abs/quant-ph/0406175; Grassl, M., On SIC-POVMs and MUBs in Dimension 6Proceedings ERATO Conference on Quantum Information Science 2004 (EQIS 04)http://arXiv.org/abs/quant-ph/0406175
[7] Hoggar, S. G., t-Designs in Projective Spaces, European Journal of Combinatorics, 3, 233-254 (1982) · Zbl 0526.05016
[8] Klappenecker, A.; Rötteler, M., Catalogue of Nice Error Bases, On-line at · Zbl 1297.94131
[9] Klappenecker, A.; Rötteler, M., Beyond Stabilizer Codes I: Nice Error Bases, IEEE Transactions on Information Theory, 48, 2392-2395 (2002), Preprint available at · Zbl 1062.94067
[10] Klappenecker, A. and M. Rötteler, Constructions of Mutually Unbiased BasesFinite Fields and Applications: 7th International Conference, Fq72984http://arXiv.org/abs/quant-ph/0309120; Klappenecker, A. and M. Rötteler, Constructions of Mutually Unbiased BasesFinite Fields and Applications: 7th International Conference, Fq72984http://arXiv.org/abs/quant-ph/0309120 · Zbl 1119.81029
[11] Kraus, K., States, Effects, and Operations, Lecture Notes in Physics, 190 (1983), Springer: Springer Berlin · Zbl 0545.46049
[12] Renes, J. M.; Blume-Kohout, R.; Scott, A. J.; Caves, C. M., Symmetric Informationally Complete Quantum Measurements, Journal of Mathematical Physics, 45, 2171-2180 (2004), Preprint available at · Zbl 1071.81015
[13] Wootters, W. K., Picturing Qubits in Phase Space (2003), Preprint available at
[14] Wootters, W. K., Quantum measurements and finite geometry (2004), Preprint available at
[15] Wootters, W. K.; Fields, B. D., Optimal State-Determination by Mutually Unbiased Measurements, Annals of Physics, 191, 363-381 (1989)
[16] Zauner, G., “Quantendesigns: Grundzüge einer nichtkommutativen Design-theorie,” Dissertation, Universität Wien (1999); Zauner, G., “Quantendesigns: Grundzüge einer nichtkommutativen Design-theorie,” Dissertation, Universität Wien (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.