zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays. (English) Zbl 1179.93143
Summary: The global exponential stability for neutral-type impulsive neural networks with discrete and distributed delays is established by utilizing the Lyapunov-Krasovskii functional combining it with the Linear Matrix Inequality (LMI) approach.

MSC:
93D05Lyapunov and other classical stabilities of control systems
93C15Control systems governed by ODE
34K40Neutral functional-differential equations
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Berman, A.; Plemmons, R. J.: Nonnegative matrices in mathematical sciences, (1979) · Zbl 0484.15016
[2] Guan, Z. H.; Lam, J.; Chen, G.: On impulsive autoassociative neural networks, Neural netw. 13, 63-69 (2000)
[3] Qiu, J.; Cao, J.: Delay-dependent robust stability of neutral-type neural networks with time delays, J. math. Control sci. Appl. 1, 179-188 (2007) · Zbl 1170.93364
[4] Zhang, Y.; Sun, J. T.: Boundedness of the solutions of impulsive differential systems with time-varying delay, Appl. math. Comput. 154, 279-288 (2004) · Zbl 1062.34091 · doi:10.1016/S0096-3003(03)00712-4
[5] De Vries, B.; Principe, J. C.: The gamma model -- A new neural model for temporal processing, Neural netw. 5, 565-576 (1992)
[6] Ruan, S.; Filfil, R.: Dynamics of a two-neuron system with discrete and distributed delays, Physica D 191, 323-342 (2004) · Zbl 1049.92004 · doi:10.1016/j.physd.2003.12.004
[7] K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proc IEEE CDC, Australia, December 2000, pp. 2805--2810
[8] Ahmed, S.; Stamova, I. M.: Global exponential stability for impulsive cellular neural networks with time-varying delays, Nonlinear anal. TMA 69, 786-795 (2008) · Zbl 1151.34061 · doi:10.1016/j.na.2008.02.067
[9] Akhmetov, M. U.; Zafer, A.: Stability of the zero solution of impulsive differential equation by the Lyapunov second method, J. math. Anal. appl. 248, 69-82 (2000) · Zbl 0965.34007 · doi:10.1006/jmaa.2000.6864
[10] Arik, S.: Global asymptotic stability of a large class of neural networks with constant time delays, Phys. lett. A 311, 504-511 (2003) · Zbl 1098.92501 · doi:10.1016/S0375-9601(03)00569-3
[11] Gopalsamy, K.; He, X. Z.: Stability in asymmetric Hopfield nets with transmission delays, Physica D 76, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[12] Huang, Z. -T.; Yang, Q. -G.; Luo, X. -S.: Exponential stability of impulsive neural networks with time-varying delays, Chaos solitons fractrals 35, 770-780 (2008) · Zbl 1139.93353 · doi:10.1016/j.chaos.2006.05.089
[13] Jiang, H.; Teng, Z.: Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays, Chaos solitons fractals 30, 83-93 (2006) · Zbl 1157.34053 · doi:10.1016/j.chaos.2005.08.132
[14] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[15] Liu, X. Zh.; Ballinger, G.: Boundedness for impulsive delay differential equations and applications to population growth models, Nonlinear anal. 53, 1041-1062 (2003) · Zbl 1037.34061 · doi:10.1016/S0362-546X(03)00041-5
[16] Long, S.; Xu, D.: Delay-dependent stability analysis for impulsive neural networks with time varying delays, Neurocomputing 71, 1705-1713 (2008)
[17] Park, J. H.; Kwon, O. M.; Lee, S. M.: LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. math. Comput. 196, 236-244 (2008) · Zbl 1157.34056 · doi:10.1016/j.amc.2007.05.047
[18] Qiu, J.: Exponential stability of impulsive neural networks with time-varying delays and reaction--diffusion terms, Neurocomputing 70, 1102-1108 (2007)
[19] Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.: Global exponential stability results for neutral-type impulsive neural networks, Nonlinear anal. RWA (2008) · Zbl 1186.34101
[20] Song, Q.; Zhang, J.: Global exponential stability of impulsive Cohen--Grossberg neural network with time-varying delays, Nonlinear anal. RWA 9, 500-510 (2008) · Zbl 1142.34046 · doi:10.1016/j.nonrwa.2006.11.015
[21] Xia, Y.; Cao, J.; Cheng, S. S.: Global exponential stability of delayed cellular neural networks with impulses, Neurocomputing 70, 2495-2501 (2007)
[22] Xu, D.; Yang, Zh.Ch.: Impulsive delay differential inequality and stability of neural networks, J. math. Anal. appl. 305, 107-120 (2005) · Zbl 1091.34046 · doi:10.1016/j.jmaa.2004.10.040
[23] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Delay-dependent exponential stability for a class of neural networks with time delays, J. comput. Math. appl. 183, 16-28 (2005) · Zbl 1097.34057 · doi:10.1016/j.cam.2004.12.025
[24] Yang, Y.; Cao, J.: Stability and periodicity in delayed cellular neural networks with impulsive effects, Nonlinear anal. RWA 8, 362-374 (2007) · Zbl 1115.34072 · doi:10.1016/j.nonrwa.2005.11.004
[25] Yang, Zh.Ch.; Xu, D.: Stability analysis of delay neural networks with impulsive effects, IEEE trans. Circuits syst. II: express briefs 52, 517-521 (2005)
[26] Zhang, Q.; Wei, X.; Xu, J.: Global exponential convergence analysis of delayed neural networks with time varying delays, Phys. lett. A 318, 537-544 (2003) · Zbl 1098.82616 · doi:10.1016/j.physleta.2003.09.062
[27] Zhao, H.: Global asymptotic stability of Hopfield neural network involving distributed delays, Neural netw. 17, 47-53 (2004) · Zbl 1082.68100 · doi:10.1016/S0893-6080(03)00077-7