## A system of real quaternion matrix equations with applications.(English)Zbl 1180.15019

A system of general linear matrix equations over the real quaternions is studied and solvability conditions with explicit expressions of the solutions, when the matrix system is solvable, are given. Let $${\mathbb H}^{n \times m}$$ stands for the set of all $$n \times m$$ matrices over the real quaternion algebra. A matrix $$A \in {\mathbb H}^{n \times m}$$ is called $$(P,Q)$$-symmetric or $$(P,Q)$$-skew-symmetric if $$A=PAQ$$ or $$A= -PAQ$$, respectively, where $$P \in {\mathbb H}^{n \times n}$$, $$Q \in {\mathbb H}^{m \times m}$$ are involutory matrices, i. e., $$P^2 = I$$, $$Q^2 = I$$. Firstly, some new necessary and sufficient conditions for the existence of a solution to the system
\begin{aligned} A_1 X_1 &= C_1, \qquad A_2 X_2 = C_3,\\ X_1 B_1 &= C_2, \qquad X_2 B_2 = C_4, \qquad A_3 X_1 B_3 + A_4 X_2 B_4 = C_5 \end{aligned}
over $${\mathbb H}$$ are established and an explicit expression of the general solution is derived. Some auxiliary results on certain related systems over $${\mathbb H}$$ are also given. Then, as application, necessary and sufficient conditions for the existence of the $$(P, Q)$$-symmetric solution to the system
$A_a X = C_a, \qquad X B_b = C_b, \qquad A_c X B_c = C_c$
over $${\mathbb H}$$, which was first investigated by P. Bhimasankaram [Sankhyā Ser. A 38, 404–409 (1976; Zbl 0411.15008)], are given. Finally, an algorithm and a numerical example to illustrate the presented results are shown.

### MSC:

 15A24 Matrix equations and identities 15B33 Matrices over special rings (quaternions, finite fields, etc.) 15B57 Hermitian, skew-Hermitian, and related matrices 15A09 Theory of matrix inversion and generalized inverses

Zbl 0411.15008
Full Text:

### References:

 [1] Wang, Q. W.; Sun, J. H.; Li, S. Z., Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 353, 169-182 (2002) · Zbl 1004.15017 [2] Wang, Q. W., A system of four matrix equations over von Neumann regular rings and its applications, Acta Math. Sin. (Engl. Ser.), 21, 2, 323-334 (2005) · Zbl 1083.15021 [3] Wang, Q. W.; Qin, F.; Lin, C. Y., The common solution to matrix equations over a regular ring with applications, Indian J. Pure Appl. Math., 36, 12, 655-672 (2005) · Zbl 1104.15014 [4] Liao, A. P.; Bai, Z. Z.; Lei, Y., Best approximate solution of matrix equation $$AXB + CYD = E$$, SIAM J. Matrix Anal. Appl., 27, 3, 675-688 (2006) · Zbl 1096.15004 [5] Wang, Q. W.; Yu, S. W.; Lin, C. Y., Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput., 195, 733-744 (2008) · Zbl 1149.15012 [6] Wang, Q. W.; Zhang, F., The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 17, 88-101 (2008) · Zbl 1147.15012 [7] Wang, Q. W.; Zhang, H. S., On solutions to the quaternion matrix equation $$AXB + CYD = E$$, Electron. J. Linear Algebra, 17, 343-358 (2008) · Zbl 1154.15019 [8] Yuan, S. F.; Liao, A. P.; Lei, Y., Least squares Hermitian solution of the matrix equation with the least norm over the skew field of quaternions, Math. Comput. Modelling, 48, 1-2, 91-100 (2008) · Zbl 1145.15303 [9] Duan, X. F.; Liao, A. P., On the existence of Hermitian positive definite solutions of the matrix equation $$X^s + A^\ast X^{- t} A = Q$$, Linear Algebra Appl., 429, 673-687 (2008) · Zbl 1143.15011 [10] Xie, D. X.; Hu, X. Y.; Sheng, Y. P., The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations, Linear Algebra Appl., 418, 142-152 (2006) · Zbl 1109.65034 [11] Xie, D. X.; Zhang, Z. Z.; Liu, Z. Y., Theory and method for updating least-squares finite element model of symmetric generalized centro-symmetric matrices, J. Comput. Appl. Math., 216, 484-497 (2008) · Zbl 1138.74050 [12] Wang, Q. W.; Chang, H. X.; Lin, C. Y., On the centro-symmetric solution of a system of matrix equations over a regular ring with identity, Algebra Colloq., 14, 4, 555-570 (2007) · Zbl 1143.15013 [13] Wang, Q. W.; Li, C. K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430, 1626-1640 (2009) · Zbl 1158.15010 [14] Wang, Q. W.; Song, G. J.; Liu, X., Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring with applications, Algebra Colloq., 16, 2, 293-308 (2009) · Zbl 1176.15020 [15] Hungerford, T. W., Algebra (1980), Spring-Verlag: Spring-Verlag New York Inc. · Zbl 0442.00002 [16] Zhang, F., Quaternions and matrices of quaternions, Linear Algebra Appl., 251, 21-57 (1997) · Zbl 0873.15008 [17] De Leo, S.; Scolarici, G., Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A, 33, 2971-2995 (2000) · Zbl 0954.81008 [19] Sangwine, S. J.; Bihan, N. L., Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations, Appl. Math. Comput., 182, 1, 727-738 (2006) · Zbl 1109.65037 [20] Zhang, F., Geršgorin type theorems for quaternionic matrices, Linear Algebra Appl., 424, 139-153 (2007) · Zbl 1117.15017 [21] Aitken, A. C., Determinants and Matrices (1939), Oliver and Boyd: Oliver and Boyd Edinburgh · Zbl 0022.10005 [22] Datta, L.; Morgera, S. D., On the reducibility of centrosymmetric matrices – applications in engineering problems, Circuits Systems Sig. Process., 8, 1, 71-96 (1989) · Zbl 0674.15005 [23] Melman, A., Symmetric centrosymmetric matrix-vector multiplication, Linear Algebra Appl., 320, 193-198 (2000) · Zbl 0971.65022 [24] Chen, H. C.; Sameh, A., Numerical linear algebra algorithms on the cedar system, (Noor, A. K., Paralled Computations and Their Impact on Mechanics, AMD-vol. 86 (1987), The American Society of Mechanical Engineers), 101-125 [25] Chen, H. C.; Sameh, A., Numerical linear algebra algorithms on the ceder system, (Noor, A. K., Parallel Computations and Their Impact on Mechanics, AMD-vol. 86 (1987), The American Society of Mechanical Engineering), 101-125 [26] Chen, H. C., Generalized reflexive matrices: special properties and application, SIAM J. Matrix Anal. Appl., 19, 140-153 (1998) · Zbl 0910.15005 [27] Trench, W. F., Minimization problems for $$(R, S)$$-symmetric and $$(R, S)$$-skew symmetric matrices, Linear Algebra Appl., 389, 23-31 (2004) · Zbl 1059.15019 [28] Tao, D.; Yasudaa, M., Spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl., 23, 3, 885-895 (2002) · Zbl 1002.15011 [29] Yasuda, M., A spectral characterization of Hermitian centrosymmetric and Hermitian skew-centrosymmetric $$K$$-matrices, SIAM J. Matrix Anal. Appl., 25, 3, 601-605 (2003) · Zbl 1062.15004 [30] Trench, W. F., Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 377, 207-218 (2004) · Zbl 1046.15028 [31] Trench, W. F., Characterization and properties of $$(R, S)$$-symmetric, $$(R, S)$$-skew symmetric, and $$(R, S)$$-conjugate matrices, SIAM J. Matrix Anal. Appl., 26, 748-757 (2005) · Zbl 1080.15022 [32] Peng, Z. Y.; Hu, X. Y., The reflexive and anti-reflexive solutions of matrix equation $$AX = B$$, Linear Algebra Appl., 375, 147-155 (2003) · Zbl 1050.15016 [33] Cvetković-iliić, D. S., The reflexive solutions of the matrix equation $$AXB = C$$, Comput. Math. Appl., 51, 897-902 (2006) · Zbl 1136.15011 [34] Li, F. L.; Hu, X. Y.; Zhang, L., The generalized reflexive solution for a class of matrix equations $$(AX = C, XB = D)$$, Acta Math. Sci., 28B, 1, 185-193 (2008) [35] Wang, Q. W., Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49, 5-6, 641-650 (2005) · Zbl 1138.15003 [36] Wang, Q. W., The general solution to a system of real quaternion matrix equations, Comput. Math. Appl., 49, 5-6, 665-675 (2005) · Zbl 1138.15004 [37] Wang, Q. W.; Chang, H. X.; Lin, C. Y., $$P$$-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput., 195, 721-732 (2008) · Zbl 1149.15011 [38] Bhimasankaram, P., Common solutions to the linear matrix equations $$AX = B, XC = D$$, and $$EXF = G$$, Sankhya Ser. A, 38, 404-409 (1976) · Zbl 0411.15008 [39] Wang, Q. W.; Wu, Z. C.; Lin, C. Y., Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications, Appl. Math. Comput., 182, 2, 1755-1764 (2006) · Zbl 1108.15014 [40] Wang, Q. W., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384, 43-54 (2004) · Zbl 1058.15015 [41] Lin, C. Y.; Wang, Q. W., New solvable conditions and a new expression of the general solution to a system of linear matrix equations over an arbitrary division ring, Southeast Asian Bull. Math., 29, 5, 755-762 (2005) · Zbl 1087.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.