Constructing algebraic groups from their Lie algebras. (English) Zbl 1180.20038

Let \(F\) be a field of characteristic \(0\), with algebraic closure \(K\). A connected algebraic group \(G\) over \(F\) is uniquely determined by its Lie algebra \(\mathfrak g\).
Given an algebraic Lie algebra \(\mathfrak g\) over \(F\) (i.e., one which is the Lie algebra of an algebraic group over \(F\)), the author gives an algorithm for computing the unique connected algebraic group \(G\) with Lie algebra \(\mathfrak g\). Here, \(\mathfrak g\) is given as a set of basis vectors inside \(\mathfrak{gl}(n,F)\) for some \(n\). The algorithm then returns a set of defining polynomials for the group \(G\). The algorithm may be implemented in a computer algebra system, such as MAGMA.
The algorithm consists of a number of subalgorithms. The first step is to decompose \(\mathfrak g\) into a semisimple part \(\mathfrak l\), a toral subalgebra \(\mathfrak t\), and an ideal \(\mathfrak n\) consisting of nilpotent matrices. Then algorithms are given to construct algebraic groups corresponding to a reductive, a semisimple, a toral, or a nilpotent Lie algebra. The reductive group is not necessarily connected; for the user who does not require connectedness, this algorithm produces a group corresponding to a reductive Lie algebra directly. Finally, the author gives an algorithm for putting the groups corresponding to these subalgebras together to obtain (defining polynomial equations for) the (connected) algebraic group corresponding to an arbitrary algebraic Lie algebra \(\mathfrak g\). In the last section, he describes some of his experiences with the implementation, in particular, the practical performance of the algorithm.


20G15 Linear algebraic groups over arbitrary fields
17B45 Lie algebras of linear algebraic groups
17-04 Software, source code, etc. for problems pertaining to nonassociative rings and algebras
20-04 Software, source code, etc. for problems pertaining to group theory
17-08 Computational methods for problems pertaining to nonassociative rings and algebras
68W30 Symbolic computation and algebraic computation


Full Text: DOI arXiv


[1] Borel, A., Introduction aux groupes arithmétiques, (Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV, Actualités Scientifiques et Industrielles, vol. 1341 (1969), Hermann: Hermann Paris) · Zbl 0186.33202
[2] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, Computational Algebra and Number Theory (London, 1993). Computational Algebra and Number Theory (London, 1993), J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[3] Chevalley, C., Théorie des groupes de Lie. Tome II, (Groupes algébriques. Groupes algébriques, Actualités Sci. Ind., vol. 1152 (1951), Hermann & Cie: Hermann & Cie Paris) · Zbl 0054.01303
[4] Chevalley, C., Théorie des Groupes de Lie, Tome III, (Théorèmes généraux sur les algèbres de Lie (1955), Hermann: Hermann Paris) · Zbl 0054.01303
[5] Derksen, H.; Jeandel, E.; Koiran, P., Quantum automata and algebraic groups, J. Symbolic Comput., 39, 3-4, 357-371 (2005) · Zbl 1124.81004
[6] Fieker, C.; de Graaf, W. A., Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras, LMS J. Comput. Math., 10, 271-287 (2007), (electronic) · Zbl 1222.11122
[7] de Graaf, W. A., (Lie Algebras: Theory and Algorithms. Lie Algebras: Theory and Algorithms, North-Holland Mathematical Library, vol. 56 (2000), Elsevier Science) · Zbl 1122.17300
[8] Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra (2002), Springer-Verlag: Springer-Verlag Berlin, with contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh, and UNIX)
[9] Grunewald, F.; Segal, D., Some general algorithms. I. Arithmetic groups, Ann. of Math. (2), 112, 3, 531-583 (1980) · Zbl 0457.20047
[10] Humphreys, J. E., Linear Algebraic Groups (1975), Springer Verlag: Springer Verlag New York, Heidelberg, Berlin · Zbl 0507.20017
[11] Jacobson, N., Lie Algebras (1979), Dover: Dover New York · JFM 61.1044.02
[12] Mostow, G. D., Fully reducible subgroups of algebraic groups, Amer. J. Math., 78, 200-221 (1956) · Zbl 0073.01603
[13] Sims, C. C., Computation with Finitely Presented Groups (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0828.20001
[14] Winter, D. J., Abstract Lie Algebras (1972), M.I.T. Press: M.I.T. Press Cambridge, MA · Zbl 0248.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.