×

Global exponential stability of interval neural networks with variable delays. (English) Zbl 1180.34083

Summary: Conditions ensuring existence, uniqueness, and global exponential stability of the equilibrium point of interval neural networks with variable delays are studied. Applying the idea of the vector Lyapunov function, and M-matrix theory, sufficient conditions for global exponential stability of interval neural networks are obtained.

MSC:

34K20 Stability theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chua, L. O.; Yang, L., Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35, 1257-1272 (1988) · Zbl 0663.94022
[2] Forti, M.; Tesi, A., New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE Trans. Circuits Syst.-I, 42, 354-366 (1995) · Zbl 0849.68105
[3] Civalleri, P. P.; Gill, L. M.; Pandolfi, L., On stability of cellular neural networks with delay, IEEE Trans. Circuits Syst.-I, 40, 157-164 (1993)
[4] Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O., Stability of cellular neural networks with dominant nonlinear and delay-type templates, IEEE Trans. Circuits Syst.-I, 40, 270-272 (1993) · Zbl 0800.92044
[5] Gopalsamy, K.; He, X., Stability in asymmetric Hopfield nets with transmission delays, Physica D, 76, 344-358 (1994) · Zbl 0815.92001
[6] Van Den Driessche, P.; Zou, X., Global attractivity in delayed Hopfield neural networks models, SIAM J. Appl. Math., 58, 1878-1890 (1998) · Zbl 0917.34036
[7] Arik, S.; Tavsanoglu, V., Equilibrium analysis of delayed CNNs, IEEE Trans. Circuits Syst.-I, 45, 168-171 (1998)
[8] Arik, S.; Tavanoglu, V., On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circuits Syst.-I, 47, 571-574 (2000) · Zbl 0997.90095
[9] Zhang, J.; Jin, X., Global stability analysis in delayed Hopfield neural networks models, Neural Netw., 13, 745-753 (2000)
[10] Zhang, J., Global stability analysis in delayed cellular neural networks, Comput. Math. Appl., 45, 1707-1720 (2003) · Zbl 1045.37057
[11] Zhang, Q.; Ma, R.; Wang, C.; Wu, J., On the global stability of delayed neural networks, IEEE Trans. Automat. Control, 48, 794-797 (2003) · Zbl 1364.93695
[12] Zhang, J., Global stability analysis in Hopfield neural networks, Appl. Math. Lett., 16, 925-931 (2003) · Zbl 1055.34099
[13] Zhang, J., Absolutely exponential stability in delayed cellular neural networks, Internat. J. Circuit Theory Appl., 30, 395-409 (2002) · Zbl 1021.68077
[14] Chen, T., Global convergence of delayed dynamical systems, IEEE Trans. Neural Netw., 12, 1532-1536 (2001)
[15] Chen, T., Global exponential stability of delayed Hopfield neural networks, Neural Netw., 14, 977-980 (2001)
[16] Sun, C.; Feng, C. B., Global robust exponential stability of internal neural networks with delays, Neural Process. Lett., 17, 107-115 (2003)
[17] Liao, X.; Wong, K. W.; Wu, Z.; Chen, G., Novel robust stability criteria for interval-delayed Hopfield neural networks, IEEE Trans. Circuits Syst.-I, 48, 1355-1359 (2001) · Zbl 1006.34071
[18] Siljiak, D. D., Large-scale Dynamic Systems — Stability and Structure (1978), Elsevier/North-Holland, Inc.: Elsevier/North-Holland, Inc. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.