×

zbMATH — the first resource for mathematics

On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations. (English) Zbl 1180.35002
Local regularity of axial symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of type I.

MSC:
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chae D., Math. Z. 239 pp 645– (2002) · Zbl 0992.35068 · doi:10.1007/s002090100317
[2] Escauriaza L., Uspekhi Matematicheskih Nauk 58 (350) pp 3– (2003)
[3] Frehse J., Math. Anal. 302 pp 699– (1995) · Zbl 0861.35074 · doi:10.1007/BF01444513
[4] Ladyzhenskaya O. A., Zap. Nauchn. Sem. LOMI 7 pp 155– (1968)
[5] Ladyzhenskaya O. A., J. Math. Fluid Mech. 1 pp 356– (1999) · Zbl 0954.35129 · doi:10.1007/s000210050015
[6] Ladyzhenskaya O. A., Linear and quasi-linear equations of parabolic type. Moscow. English translation in Translations of Mathematical Monographs 23 (1967) · Zbl 0182.43204
[7] Ladyzhenskaya O. A., Linear and Quasilinear Equations of Elliptic Type (1968)
[8] Lemarie-Riesset P. G., Recent Developments in the Navier–Stokes Problem · doi:10.1201/9781420035674
[9] Leonardi S., ZAA 18 pp 639– (1999)
[10] Lin F.-H., Comm. Pure Appl. Math. 51 pp 241– (1998) · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[11] Nečas J., Acta Math. 176 pp 283– (1996) · Zbl 0884.35115 · doi:10.1007/BF02551584
[12] Neustupa J., Math. Bohemica 126 pp 469– (2001)
[13] Pokorny M., Elliptic and Parabolic Problems (Rolduc/Gaeta, 2001) pp 233– (2002) · doi:10.1142/9789812777201_0022
[14] Poláçik P., Duke Math. J. 139 pp 555– (2007) · Zbl 1146.35038 · doi:10.1215/S0012-7094-07-13935-8
[15] Poláçik P., Indiana Univ. Math. J. 56 pp 879– (2007) · Zbl 1122.35051 · doi:10.1512/iumj.2007.56.2911
[16] Seregin G., Handbook of Mathematical Fluid Mechanics 4 pp 159– (2007)
[17] Seregin G., Zapiski Nauchn. Seminar POMI 336 pp 199– (2006)
[18] Seregin G., Zapiski Nauchn. Seminar POMI 336 pp 46– (2006)
[19] Serrin J., Acta Math. 189 pp 79– (2002) · Zbl 1059.35040 · doi:10.1007/BF02392645
[20] Stein E., Singular Integrals and Differentiabilty Properties of Functions (1970)
[21] Tsai T.-P., Arch. Rational Mech. Anal. 143 pp 29– (1998) · Zbl 0916.35084 · doi:10.1007/s002050050099
[22] Ukhovskij M. R., Prikl. Mat. Mech. 32 pp 59– (1968)
[23] Zhang Q. S., Commun. Math. Phys. 244 pp 245– (2004) · Zbl 1061.35026 · doi:10.1007/s00220-003-0974-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.