Huang, Guangyue; Chen, Wenyi Uniqueness for the Brezis-Nirenberg problem on compact Einstein manifolds. (English) Zbl 1180.35232 Osaka J. Math. 45, No. 3, 609-614 (2008). Let \((M^n,g_0)\) be the compact Einstein manifold with positive scalar curvature \(R_0\) and \(n\geq 3\). In the present study the authors consider the following nonlinear elliptic equation \[ \Delta_0u-\lambda n+f(u)u^{\frac{n+2}{n-2}}=0,\text{ on }M^n\quad u>0,\text{ on } M^n\tag{1} \] where \(\Delta_0\) is the Laplace-Beltrami operator on \(M^n\) related to \(g_0\). The authors prove that for \(0<\lambda<(n-2) R_0/4(n-1)\) and \(f(n)\leq 0\), and at least one of two inequalities is strict, the only positive solution of (1) is constant. Reviewer: Messoud A. Efendiev (Berlin) MSC: 35J60 Nonlinear elliptic equations Keywords:compact Einstein manifolds; positive solution; curvature; semi-linear elliptic equation PDFBibTeX XMLCite \textit{G. Huang} and \textit{W. Chen}, Osaka J. Math. 45, No. 3, 609--614 (2008; Zbl 1180.35232) Full Text: Euclid References: [1] A.L. Besse: Einstein Manifolds, Springer, Berlin, 1987. [2] H. Brezis and L.A. Peletier: Elliptic equations with critical exponent on \(\mathbf{S}^{3}\): new non-minimising solutions , C.R. Math. Acad. Sci. Paris 339 (2004), 391–394. · Zbl 1081.35028 · doi:10.1016/j.crma.2004.07.010 [3] M.-F. Bidaut-Véron and L. Véron: Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations , Invent. Math. 106 (1991), 489–539. · Zbl 0755.35036 · doi:10.1007/BF01243922 [4] H. Brezis and Y. Li: Some nonlinear elliptic equations have only constant solutions , J. Partial Differential Equations 19 (2006), 208–217. · Zbl 1174.35368 [5] H. Brezis and L.A. Peletier: Elliptic equations with critical exponent on spherical caps of \(S^{3}\) , J. Anal. Math. 98 (2006), 279–316. · Zbl 1151.35035 · doi:10.1007/BF02790278 [6] W. Chen and J. Wei: On the Brezis-Nirenberg problem on \(\mathbf{S}^{3}\), and a conjecture of Bandle-Benguria , C.R. Math. Acad. Sci. Paris 341 (2005), 153–156. · Zbl 1142.35404 · doi:10.1016/j.crma.2005.06.001 [7] S.Y. Cheng and S.T. Yau: Hypersurfaces with constant scalar curvature , Math. Ann. 225 (1977), 195–204. · Zbl 0349.53041 · doi:10.1007/BF01425237 [8] B. Gidas and J. Spruck: Global and local behavior of positive solutions of nonlinear elliptic equations , Comm. Pure Appl. Math. 34 (1981), 525–598. · Zbl 0465.35003 · doi:10.1002/cpa.3160340406 [9] J.R. Licois and L.Véron: A class of nonlinear conservative elliptic equations in cylinders , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 249–283. · Zbl 0918.35051 [10] M. Obata: Certain conditions for a Riemannian manifold to be iosometric with a sphere , J. Math. Soc. Japan 14 (1962), 333–340. · Zbl 0115.39302 · doi:10.2969/jmsj/01430333 [11] M. Obata: The conjectures on conformal transformations of Riemannian manifolds , J. Differential Geometry 6 (1971/72), 247–258. · Zbl 0236.53042 [12] R.M. Schoen: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics ; in Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Math. 1365 , Springer, Berlin, 1989, 120–154. · Zbl 0702.49038 · doi:10.1007/BFb0089180 [13] J. Wei and X. Xu: Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in \(\mathbb{R}^{3}\) , Pacific J. Math. 221 (2005), 159–165. · Zbl 1144.35382 · doi:10.2140/pjm.2005.221.159 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.