Todorova, Grozdena; Uğurlu, Davut; Yordanov, Borislav Regularity and scattering for the wave equation with a critical nonlinear damping. (English) Zbl 1180.35363 J. Math. Soc. Japan 61, No. 2, 625-649 (2009). The authors demonstrate that the nonlinear wave equation \(\square u+u_{t}^{3}=0\) is globally well-posed in radially symmetric Sobolev spaces \(H^{k}_{\text{rad}}(\mathbb R^{3})\times H^{k - 1}_{\text{rad}}(\mathbb R^{3})\) for all integers \(k>2\). This partially extends the well-posedness in \(H^{k}(\mathbb R^{3})\times H^{k - 1}(\mathbb R^{3})\) for all \(k\in \)[1,2]. Furthermore, they obtain the global existence of \(C^{\infty }\) solutions with radial \(C_{0}^{\infty }\) data. The regularity problem requires smoothing and non-concentration estimates in addition to the standard energy estimates, since the cubic damping is critical when \(k=2\). Besides, they establish scattering results for initial data \((u,u_{t})|_{t=0}\) in radially symmetric Sobolev spaces, as well. Reviewer: Ömer Kavaklioglu (Izmir) Cited in 4 Documents MSC: 35L71 Second-order semilinear hyperbolic equations 35L15 Initial value problems for second-order hyperbolic equations Keywords:wave equation; nonlinear damping; regularity; radially symmetric Sobolev spaces; smoothing and non-concentration estimates × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. · Zbl 0919.35089 · doi:10.1353/ajm.1999.0001 [2] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schr\(\ddot{\text{o}}\)dinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. JSTOR: · Zbl 0958.35126 · doi:10.1090/S0894-0347-99-00283-0 [3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering in the energy space for the critical nonlinear Schr\(\ddot{\text{o}}\)dinger equation in \(R^{3}\), Ann. of Math. (2), 167 (2008), 767-865. · Zbl 1178.35345 · doi:10.4007/annals.2008.167.767 [4] J.-M. Delort, Existence globale et comportement asymptotique pour l’quation de Klein-Gordon quasi linaire donnes petites en dimension 1, (French) [Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1] Ann. Sci. École Norm. Sup. (4), 34 (2001), 1-61. · Zbl 0990.35119 · doi:10.1016/S0012-9593(00)01059-4 [5] M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2), 132 (1990), 485-509. JSTOR: · Zbl 0736.35067 · doi:10.2307/1971427 [6] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, 26 , Springer-Verlag, Berlin, 1997. [7] J.-L. Joly, G. Metivier and J. Rauch, Nonlinear hyperbolic smoothing at a focal point, Michigan Math. J., 47 (2000), 295-312. · Zbl 0989.35093 · doi:10.1307/mmj/1030132535 [8] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., 46 (1993), 1221-1268. · Zbl 0803.35095 · doi:10.1002/cpa.3160460902 [9] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141. · Zbl 0509.35009 · doi:10.1002/cpa.3160360106 [10] H. Kubo, Asymptotic behavior of solutions to semilinear wave equations with dissipative structure, Discrete Contin. Dyn. Syst., 2007, Dynamical Systems and Differential Equations, Proceedings of the 6th AIMS International Conference, suppl., pp. 602-613. · Zbl 1163.35441 [11] J. Liang, Nonlinear Hyperbolic Smoothing at a Focal Point, PhD dissertation, 2002. [12] J.-L. Lions and W. A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. · Zbl 0132.10501 [13] T. Matsuyama, Asymptotics for the nonlinear dissipative wave equation, Trans. Amer. Math. Soc., 355 (2003), 865-899. JSTOR: · Zbl 1116.35337 · doi:10.1090/S0002-9947-02-03147-1 [14] K. Mochizuki, Decay and asymptotics for wave equations with dissipative term, Lecture Notes in Phys., 39 , Springer-Verlag, 1975, pp. 486-490. · Zbl 0364.35032 [15] K. Nakanishi, Scattering theory for nonlinear Klein-Gordon equation with Sobolev critical power, Internat. Math. Res. Notices, (1999), no. 1, 31-60. · Zbl 0933.35166 · doi:10.1155/S1073792899000021 [16] J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. of Math. (2), 138 (1993), 503-518. JSTOR: · Zbl 0836.35096 · doi:10.2307/2946554 [17] J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, 2 , New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. · Zbl 0993.35001 [18] W. A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, 73 , Published for the Conference Board of the Mathematical Sciences, Washington, DC; American Mathematical Society, Providence, RI, 1989. · Zbl 0714.35003 [19] M. Struwe, Globally regular solutions to the \(u^{5}\)-Klein-Gordon equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 495-513. · Zbl 0728.35072 [20] H. Sunagawa, Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, 58 (2006), 379-400. · Zbl 1107.35087 · doi:10.2969/jmsj/1149166781 [21] T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57-80. · Zbl 1119.35092 [22] T. Tao, Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions, Dyn. Partial Differ. Equ., 3 (2006), 93-110. · Zbl 1145.35089 · doi:10.4310/DPDE.2006.v3.n2.a1 [23] T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. · Zbl 1187.35246 · doi:10.1215/S0012-7094-07-14015-8 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.