Regularity criteria for the Navier-Stokes-Landau-Lifshitz system. (English) Zbl 1180.35406

Summary: We study regularity criteria for the Navier-Stokes-Landau-Lifshitz system. Using delicate estimates, the regularity criteria for smooth solution of Navier-Stokes-Landau-Lifshitz system in Besov spaces and the multiplier spaces are obtained. The Navier-Stokes-Landau-Lifshitz system is coupled system of the Navier-Stokes equation and Landau-Lifshitz system, our results generalize the related results for Navier-Stokes equation and Landau-Lifshitz system to our system.


35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35B35 Stability in context of PDEs
Full Text: DOI


[1] Kim, H., A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37, 1417-1434 (2006) · Zbl 1141.35432
[2] Kozono, H.; Ogawa, T.; Taniuchi, Y., The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations, Math. Z., 242, 251-278 (2002) · Zbl 1055.35087
[3] Ogawa, T., Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow, SIAM J. Math. Anal., 34, 6, 1318-1330 (2003) · Zbl 1036.35082
[4] Maz’ya, V. G., On the theory of the \(n\)-dimensional Schrödinger operator, Izv. Akad. Nauk SSSR (Ser. Mat.), 28, 1145-1172 (1964) · Zbl 0148.35602
[5] Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem (2002), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1034.35093
[6] Maz’ya, V. G.; Shaposhnikova, T. O., Theory of Multipliers in Spaces of Differentiable Functions, Monogr. Stud. Math., vol. 23 (1985), Pitman: Pitman Boston, MA · Zbl 0645.46031
[7] Lin, F. H.; Liu, C., Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14, 289-330 (2001) · Zbl 1433.82014
[8] Triebel, H., Theory of Function Spaces II (1992), Birkhäuser Basel · Zbl 0778.46022
[9] Machihara, S.; Ozawa, T., Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131, 5, 1553-1556 (2002) · Zbl 1022.46018
[10] Meyer, Y., Oscillating Patterns in Some Nonlinear Evolution Equations, Lecture Notes in Math., vol. 1871 (2006), pp. 101-187 · Zbl 1358.35096
[11] Temam, R., Navier-Stokes Equations (1977), North-Holland: North-Holland Amsterdam · Zbl 0335.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.