zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Blow up and propagation speed of solutions to the DGH equation. (English) Zbl 1180.35473
Summary: A wave-breaking mechanism for solutions to the DGH equation with certain initial profiles and propagation speed are discussed in this paper. Firstly, we apply the best constant to give sufficient condition via an appropriate integral form of the initial data, which guarantees finite time singularity formation for the corresponding solution, then we establish blow up criteria via the conserved quantities. Finally, persistence properties of the strong solutions are presented and infinite propagation speed is also investigated in the sense that the corresponding solution $u(x,t)$ does not have compact spatial support for $t>0$ though $u_0 \in C_0^{\infty}(\Bbb{R})$.

35Q53KdV-like (Korteweg-de Vries) equations
37L05General theory, nonlinear semigroups, evolution equations
35B44Blow-up (PDE)
Full Text: DOI