×

zbMATH — the first resource for mathematics

Integrable elliptic pseudopotentials. (English. Russian original) Zbl 1180.37096
Theor. Math. Phys. 161, No. 1, 1340-1352 (2009); translation from Teor. Mat. Fiz. 161, No. 1, 21-36 (2009).
Summary: We construct integrable pseudopotentials with an arbitrary number of fields in terms of an elliptic generalization of hypergeometric functions in several variables. These pseudopotentials are multiparameter deformations of ones constructed by Krichever in studying the Whitham-averaged solutions of the KP equation and yield new integrable \((2+1)\)-dimensional systems of hydrodynamic type. Moreover, an interesting class of integrable \((1+1)\)-dimensional systems described in terms of solutions of an elliptic generalization of the Gibbons-Tsarev system is related to these pseudopotentials.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
33C70 Other hypergeometric functions and integrals in several variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Odesskii and V. Sokolov, ”Integrable pseudopotentials related to generalized hypergeometric functions,” arXiv:0803.0086v3 [nlin.SI] (2008). · Zbl 1274.37040
[2] I. M. Gel’fand, M. I. Graev, and V. S. Retakh, Russ. Math. Surveys, 47, No. 4, 1–88 (1992). · Zbl 0798.33010 · doi:10.1070/RM1992v047n04ABEH000915
[3] V. E. Zakharov, ”Dispersionless limit of integrable systems in 2+1 dimensions,” in: Singular Limits of Dispersive Waves (NATO Adv. Sci. Inst. Ser. B Phys., Vol. 320, N. M. Ercolani, I. R. Gabitov, C. D. Levermore, and D. Serre, eds.), Plenum, New York (1994), pp. 165–174. · Zbl 0852.35130
[4] I. M. Krichever, Comm. Math. Phys., 143, 415–429 (1992). · Zbl 0753.35095 · doi:10.1007/BF02099016
[5] V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 13, 166–174 (1979).
[6] I. M. Krichever, Comm. Pure Appl. Math., 47, 437–475 (1994). · Zbl 0811.58064 · doi:10.1002/cpa.3160470403
[7] B. A. Dubrovin, ”Geometry of 2D topological field theories,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.), Springer, Berlin (1996), pp. 120–348. · Zbl 0841.58065
[8] A. V. Odesskii, Selecta Math., 13, 727–742 (2008). · Zbl 1237.37048 · doi:10.1007/s00029-008-0050-3
[9] V. P. Spiridonov, Russ. Math. Surveys, 63, 405–472 (2008). · Zbl 1173.33017 · doi:10.1070/RM2008v063n03ABEH004533
[10] J. Gibbons and S. P. Tsarev, Phys. Lett. A, 211, 19–24 (1996); 258, 263–271 (1999). · Zbl 1072.35588 · doi:10.1016/0375-9601(95)00954-X
[11] E. V. Ferapontov and K. R. Khusnutdinova, Comm. Math. Phys., 248, 187–206 (2004); J. Phys. A, 37, 2949–2963 (2004). · Zbl 1070.37047 · doi:10.1007/s00220-004-1079-6
[12] B. A. Dubrovin and S. P. Novikov, Russ. Math. Surveys, 44, 35–124 (1989). · Zbl 0712.58032 · doi:10.1070/RM1989v044n06ABEH002300
[13] S. P. Tsarev, Sov. Math. Dokl., 31, 488–491 (1985); Math. USSR-Izv., 37, 397–419 (1991).
[14] M. V. Pavlov, Comm. Math. Phys., 272, 469–505 (2007). · Zbl 1131.37065 · doi:10.1007/s00220-007-0235-1
[15] V. A. Shramchenko, J. Phys. A, 36, 10585–10605 (2003); arXiv:math-ph/0402014v1 (2004). · Zbl 1040.37060 · doi:10.1088/0305-4470/36/42/012
[16] A. A. Akhmetshin, Yu. S. Vol’vovskii, and I. M. Krichever, Russ. Math. Surveys, 54, 427–429 (1999). · Zbl 0934.53032 · doi:10.1070/RM1999v054n02ABEH000135
[17] E. V. Ferapontov and D. G. Marshal, Math. Ann., 339, 61–99 (2007). · Zbl 1145.37034 · doi:10.1007/s00208-007-0106-2
[18] M. V. Pavlov, J. Phys. A, 39, 10803–10819 (2006). · Zbl 1098.35097 · doi:10.1088/0305-4470/39/34/014
[19] A. V. Odesskii, M. V. Pavlov, and V. V. Sokolov, Theor. Math. Phys., 154, 209–219 (2008). · Zbl 1146.76061 · doi:10.1007/s11232-008-0020-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.