Stability and existence of critical Kaehler metrics on ruled manifolds. (English) Zbl 1180.53039

Recall the following fundamental result of Lichnerowicz: the Lie algebra \(h(M)\) of holomorphic vector fields on a compact Kähler manifold \((M,w)\) with constant scalar curvature decomposes as \(h(M)=h_0(M)\oplus c(M)\), where \(h_0(M)= \{z\in h(M):z\lrcorner w \text{ is }\overline\partial\text{-exact}\}\) and \(c(M)=\{z\in h(M):z \lrcorner w\in H^{0,1}(M,\mathbb{C})\}\). The author discusses


53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J37 Perturbations of PDEs on manifolds; asymptotics
32W50 Other partial differential equations of complex analysis in several variables
53C55 Global differential geometry of Hermitian and Kählerian manifolds
19B14 Stability for linear groups
53D20 Momentum maps; symplectic reduction
Full Text: DOI


[1] \auD. Burns and P. de Bartolomeis, Stability of Vector Bundles and Extremal Metrics, \tiInvent. Math., , 92 ( (1988),)\spg403-\epg407. · Zbl 0645.53037
[2] \auE. Calabi, Extremal Kaehler Metrics, in “Seminar on Differential Geometry”, \tiAnn. of Math. Stud., , 102 ( (1982),)\spg259-\epg290. · Zbl 0487.53057
[3] S. K. Donaldson, Remarks on Gauge Theory, Complex Geometry and 4-Manifold Topology, Fields Medalist Lectures, Singapore, 1997, pp. 384-403.
[4] \auS. K. Donaldson, Scalar Curvature and Projective Embeddings, I, \tiJ. Differential Geom., , 59 ( (2001),)\spg479-\epg522. · Zbl 1052.32017
[5] \auS. K. Donaldson, Scalar Curvature and Stability of Toric Varieties, \tiJ. Differential Geom., , 62 ( (2002),)\spg289-\epg349. · Zbl 1074.53059
[6] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four Manifolds, Oxford University Press, 1990. · Zbl 0820.57002
[7] A. Futaki, Kaehler-Einstein Metrics and Integral Invariants, Lecture Notes in Math. 1314 , (1988). · Zbl 0646.53045
[8] \auY-J Hong, Constant Hermitian Scalar Curvature Equations on Ruled Manifolds, \tiJ. Differential Geom., , 53 ( (1999),)\spg465-\epg516. · Zbl 1163.53341
[9] \auY-J Hong, Gauge-Fixing Constant Scalar Curvature Equations on Ruled Manifolds and the Futaki Invariants, \tiJ. Differential Geom., , 60 ( (2002),)\spg389-\epg453. · Zbl 1049.53050
[10] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami Shoten and Princeton University Press, 1987. · Zbl 0708.53002
[11] \auN. C. Leung, Einstein Type Metrics and Stability on Vector Bundles, \tiJ. Differential Geom., , 45 ( (1997),)\spg514-\epg546. · Zbl 0926.53017
[12] \auA. Lichnerowicz, Variétés Kähleriennes et premiere classe de Chern, \tiJ. Differential Geom., , 1 ( (1967),)\spg195-\epg224. · Zbl 0167.20004
[13] J. Ross, Instability of Polarised Algebraic Varieties, Thesis, Imperial College, 2003.
[14] R. P. Thomas, Notes on GIT and Symplectic Reduction for Bundles and Varieties., 1-49.
[15] \auG. Tian, Kaehler-Einstein Metrics with Positive Scalar Curvature, \tiInvent. Math., , 137 ( (1997),)\spg1-\epg37. · Zbl 0892.53027
[16] \auK. Uhlenbeck and S-T Yau, On the Existence of Hermitian Yang-Mills Connections in Stable Bundles, \tiComm. Pure Appl. Math., Supplement, , 39 ( (1986),)\spgS257-\epgS293. · Zbl 0615.58045
[17] \auS-T Yau, On the Ricci Curvature of a Compact Kaehler Manifold and the Complex Monge-Ampere Equation, I, \tiComm. Pure Appl. Math., , 31 ( (1978),)\spg339-\epg411. · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.